SOME APPLICATIONS OF MINIMAL P_γ-OPEN SETS

ALIAS B. KHALAF AND HARIWAN Z. IBRAHIM

Abstract. We characterize minimal P_γ-open sets in topological spaces. We show that any nonempty subset of a minimal P_γ-open set is pre P_γ-open. As an application of a theory of minimal P_γ-open sets, we obtain a sufficient condition for a P_γ-locally finite space to be a pre P_γ-Hausdorff space.

1. Introduction

Mashhour et al [3], introduced and investigated the notions of preopen sets, and Kasahara [4], defined the concept of an operation on topological spaces. Ogata [5], introduced the concept of γ-open sets and investigated the related topological properties of the associated topology τ_γ and τ, where τ_γ is the collection of all γ-open sets.

In this paper, we study fundamental properties of minimal P_γ-open sets and apply them to obtain some results in topological spaces. Also we give some characterizations of minimal P_γ-open sets. Moreover, we define and study P_γ-locally finite spaces and we apply minimal P_γ-open sets to define pre P_γ-open sets.

Finally, we show that any P_γ-locally finite space containing a minimal P_γ-open subset is pre P_γ-Hausdorff.

2. Preliminaries

Definition 2.1. [3] A subset A of a topological space (X, τ) is said to be preopen if $A \subseteq \text{Int}(\text{Cl}(A))$. The family of all preopen sets is denoted by $PO(X, \tau)$.

Definition 2.2. [4] Let (X, τ) be a topological space. An operation γ on the topology τ is a mapping from τ to power set $P(X)$ of X such that $V \subseteq \gamma(V)$ for each $V \in \tau$, where $\gamma(V)$ denotes the value of γ at V. It is denoted by $\gamma : \tau \to P(X)$.

Definition 2.3. [5] A subset A of a topological space (X, τ) is called γ-open set if for each $x \in A$ there exists an open set U such that $x \in U$ and $\gamma(U) \subseteq A$.

2000 Mathematics Subject Classification. Primary: 54A05, 54A10; Secondary: 54C05.

Key words and phrases. P_γ-open, minimal P_γ-open, pre P_γ-open, finite P_γ-open, P_γ-locally finite and pre P_γ-Hausdorff space.
Definition 2.4. [2] Let X be a space and $A \subseteq X$ a γ-open set. Then A is called a minimal γ-open set if ϕ and A are the only γ-open subsets of A.

The following definitions and results are obtained from [1]. we defined γ to be a mapping on $PO(X)$ into $P(X)$ and $\gamma : PO(X) \rightarrow P(X)$ is called an operation on $PO(X)$, such that $V \subseteq \gamma(V)$ for each $V \in PO(X)$ [1].

Definition 2.5. A subset A of a space X is called P_γ-open if for each $x \in A$, there exists a preopen set U such that $x \in U$ and $\gamma(U) \subseteq A$.

Definition 2.6. Let A be a subset of (X, τ), and $\gamma : PO(X) \rightarrow P(X)$ be an operation. Then the P_γ-closure (resp., P_γ-interior) of A is denoted by $p_\gamma Cl(A)$ (resp., $p_\gamma Int(A)$) and defined as follows:

1. $p_\gamma Cl(A) = \bigcap\{F : F$ is P_γ-closed and $A \subseteq F\}$.
2. $p_\gamma Int(A) = \bigcup\{U : U$ is P_γ-open and $U \subseteq A\}$.

Theorem 2.7. For a point $x \in X$, $x \in p_\gamma Cl(A)$ if and only if for every P_γ-open set V of X containing x, $A \cap V \neq \phi$.

Definition 2.8. An operation γ on $PO(X)$ is said to be pre regular if for every preopen sets U and V of each $x \in X$, there exists a preopen set W of x such that $\gamma(W) \subseteq \gamma(U) \cap \gamma(V)$.

Proposition 2.9. Let γ be a pre regular operation on $PO(X)$. If A and B are P_γ-open sets in X, then $A \cap B$ is also a P_γ-open set.

3. Minimal P_γ-open sets

In view of the definition of minimal γ-open sets [2], we define minimal P_γ-open sets as:

Definition 3.1. Let X be a space and $A \subseteq X$ a P_γ-open set. Then A is called a minimal P_γ-open set if ϕ and A are the only P_γ-open subsets of A.

The following examples show that minimal P_γ-open sets and minimal γ-open sets are independent of each other.

Example 3.2. Consider $X = \{a, b, c\}$ with the topology $\tau = \{\phi, X\}$. Define an operation $\gamma : PO(X) \rightarrow P(X)$ by $\gamma(A) = A$. The P_γ-open sets are ϕ, $\{a\}$, $\{b\}$, $\{c\}$, $\{a, b\}$, $\{a, c\}$, $\{b, c\}$ and X. Here $\{a\}$ is minimal P_γ-open but not minimal γ-open. Also we consider $X = \{a, b, c\}$ with the topology $\tau = \{\phi, \{a, b\}, X\}$. Define $\gamma : PO(X) \rightarrow P(X)$ as $\gamma(A) = A$, the set $\{a, b\}$ is minimal γ-open but not minimal P_γ-open.

Proposition 3.3. Let X be a space. Then:

1. Let A be a minimal P_γ-open set and B a P_γ-open set. Then $A \cap B = \phi$ or $A \subseteq B$, where γ is pre regular.
2. Let B and C be minimal P_γ-open sets. Then $B \cap C = \phi$ or $B = C$, where γ is pre regular.
Proof. (1) Let B be a P_{γ}-open set such that $A \cap B \neq \phi$. Since A is a minimal P_{γ}-open set and $A \cap B \subseteq A$, we have $A \cap B = A$. Therefore $A \subseteq B$.

(2) If $B \cap C \neq \phi$, then we see that $B \subseteq C$ and $C \subseteq B$ by (1). Therefore $B = C$. \hfill \Box

Proposition 3.4. Let A be a minimal P_{γ}-open set. If x is an element of A, then $A \subseteq B$ for any P_{γ}-open neighborhood B of x, where γ is pre regular.

Proof. Let B be a P_{γ}-open neighborhood of x such that $A \not\subseteq B$. Since γ is pre regular operation, then $A \cap B$ is P_{γ}-open set such that $A \cap B \subseteq A$ and $A \cap B \neq \phi$. This contradicts our assumption that A is a minimal P_{γ}-open set.

The following example shows that the condition that γ is pre regular is necessary for the above proposition.

Example 3.5. Consider $X = \{a, b, c\}$ with the topology $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, X\}$. Define an operation γ on $PO(X)$ by

$$\gamma(A) = \begin{cases} A & \text{if } b \in A \\ Cl(A) & \text{if } b \notin A \end{cases}$$

Then calculations show that the operation γ is not pre regular. Clearly $A = \{a, c\}$ is a minimal P_{γ}-open set. Thus for $a \in A$, there is no P_{γ}-open set B containing a such that $A \subseteq B$.

Proposition 3.6. Let A be a minimal P_{γ}-open set. Then for any element x of A, $A = \cap\{B : B$ is P_{γ}-open neighborhood of $x\}$, where γ is pre regular.

Proof. By Proposition 3.4 and the fact that A is P_{γ}-open neighborhood of x, we have $A \subseteq \cap\{B : B$ is P_{γ}-open neighborhood of $x\} \subseteq A$. Therefore we have the result. \hfill \Box

Proposition 3.7. Let A be a minimal P_{γ}-open set in X and $x \in X$ such that $x \notin A$. Then for any P_{γ}-open neighborhood C of x, $C \cap A = \phi$ or $A \subseteq C$, where γ is pre regular.

Proof. Since C is a P_{γ}-open set, we have the result by Proposition 3.3. \hfill \Box

Corollary 3.8. Let A be a minimal P_{γ}-open set in X and $x \in X$ such that $x \notin A$. Define $A_x = \cap\{B : B$ is P_{γ}-open neighborhood of $x\}$. Then $A_x \cap A = \phi$ or $A \subseteq A_x$, where γ is pre regular.

Proof. If $A \subseteq B$ for any P_{γ}-open neighborhood B of x, then $A \subseteq \cap\{B : B$ is P_{γ}-open neighborhood of $x\}$. Therefore $A \subseteq A_x$. Otherwise there exists a P_{γ}-open neighborhood B of x such that $B \cap A = \phi$. Then we have $A_x \cap A = \phi$. \hfill \Box

Corollary 3.9. If A is a nonempty minimal P_{γ}-open set of X, then for a nonempty subset C of A, $A \subseteq p_{\gamma}Cl(C)$, where γ is pre regular.
Proof. Let C be any nonempty subset of A. Let $y \in A$ and B be any P_γ-open neighborhood of y. By Proposition 3.4, we have $A \subseteq B$ and $C = A \cap C \subseteq B \cap C$. Thus we have $B \cap C \neq \phi$ and hence $y \in p_\gamma Cl(C)$. This implies that $A \subseteq p_\gamma Cl(C)$. This completes the proof. \qed

Proposition 3.10. Let A be a nonempty P_γ-open subset of a space X. If $A \subseteq p_\gamma Cl(C)$, then $p_\gamma Cl(A) = p_\gamma Cl(C)$, for any nonempty subset C of A.

Proof. For any nonempty subset C of A, we have $p_\gamma Cl(C) \subseteq p_\gamma Cl(A)$. On the other hand, by supposition we see $p_\gamma Cl(A) \subseteq p_\gamma Cl(p_\gamma Cl(C)) = p_\gamma Cl(C)$ implies $p_\gamma Cl(A) \subseteq p_\gamma Cl(C)$. Therefore we have $p_\gamma Cl(A) = p_\gamma Cl(C)$ for any nonempty subset C of A. \qed

Proposition 3.11. Let A be a nonempty P_γ-open subset of a space X. If $p_\gamma Cl(A) = p_\gamma Cl(C)$, for any nonempty subset C of A, then A is a minimal P_γ-open set.

Proof. Suppose that A is not a minimal P_γ-open set. Then there exists a nonempty P_γ-open set B such that $B \subseteq A$ and hence there exists an element $x \in A$ such that $x \notin B$. Then we have $p_\gamma Cl(\{x\}) \subseteq (X \setminus B)$ implies that $p_\gamma Cl(\{x\}) \neq p_\gamma Cl(A)$. This contradiction proves the proposition. \qed

Combining Corollary 3.9 and Propositions 3.10 and 3.11, we have:

Theorem 3.12. Let A be a nonempty P_γ-open subset of space X. Then the following are equivalent:

1. A is minimal P_γ-open set, where γ is pre regular.
2. For any nonempty subset C of A, $A \subseteq p_\gamma Cl(C)$.
3. For any nonempty subset C of A, $p_\gamma Cl(A) = p_\gamma Cl(C)$.

Definition 3.13. A subset A of a space X is called a pre P_γ-open set if $A \subseteq p_\gamma Int(p_\gamma Cl(A))$. The family of all pre P_γ-open sets of X will be denoted by $PO_\gamma(X)$.

Definition 3.14. A space X is called pre P_γ-Hausdorff if for each $x, y \in X$, $x \neq y$ there exist subsets U and V of $PO_\gamma(X)$ such that $x \in U$, $y \in V$, and $U \cap V = \phi$.

Theorem 3.15. Let A be a minimal P_γ-open set. Then any nonempty subset C of A is a pre P_γ-open set, where γ is pre regular.

Proof. By Corollary 3.9, we have $A \subseteq p_\gamma Cl(C)$ implies $p_\gamma Int(A) \subseteq p_\gamma Int(p_\gamma Cl(C))$. Since A is a P_γ-open set, we have $C \subseteq A = p_\gamma Int(A) \subseteq p_\gamma Int(p_\gamma Cl(C))$ or $C \subseteq p_\gamma Int(p_\gamma Cl(C))$, that is C pre P_γ-open. Hence the proof. \qed

Theorem 3.16. Let A be a minimal P_γ-open set and B be a nonempty subset of X. If there exists a P_γ-open set C containing B such that $C \subseteq p_\gamma Cl(B \cup A)$, then $B \cup D$ is a pre P_γ-open set for any nonempty subset D of A, where γ is pre regular.
Proof. By Theorem 3.12 (3), we have \(p_\gamma \text{Cl}(B \cup D) = p_\gamma \text{Cl}(B) \cup p_\gamma \text{Cl}(D) = p_\gamma \text{Cl}(B) \cup p_\gamma \text{Cl}(A) = p_\gamma \text{Cl}(B \cup A) \). By supposition \(C \subseteq p_\gamma \text{Cl}(B \cup A) = p_\gamma \text{Cl}(B \cup D) \) implies \(p_\gamma \text{Int}(C) \subseteq p_\gamma \text{Int}(p_\gamma \text{Cl}(B \cup D)) \). Since \(C \) is a \(P_\gamma \)-open neighborhood of \(B \), namely \(C \) is a \(P_\gamma \)-open such that \(B \subseteq C \), we have \(B \subseteq C = p_\gamma \text{Int}(C) \subseteq p_\gamma \text{Int}(p_\gamma \text{Cl}(B \cup D)) \). Moreover we have \(p_\gamma \text{Int}(A) \subseteq p_\gamma \text{Int}(p_\gamma \text{Cl}(B \cup A)) \), for \(p_\gamma \text{Int}(A) = A \subseteq p_\gamma \text{Cl}(A) \subseteq p_\gamma \text{Cl}(B) \cup p_\gamma \text{Cl}(A) = p_\gamma \text{Cl}(B \cup A) \). Since \(A \) is a \(P_\gamma \)-open set, we have \(D \subseteq A = p_\gamma \text{Int}(A) \subseteq p_\gamma \text{Int}(p_\gamma \text{Cl}(B \cup A)) = p_\gamma \text{Int}(p_\gamma \text{Cl}(B \cup D)) \). Therefore \(B \cup D \subseteq p_\gamma \text{Int}(p_\gamma \text{Cl}(B \cup D)) \) implies \(B \cup D \) is a pre \(P_\gamma \)-open set. \(\square \)

Corollary 3.17. Let \(A \) be a minimal \(P_\gamma \)-open set and \(B \) a nonempty subset of \(X \). If there exists a \(P_\gamma \)-open set \(C \) containing \(B \) such that \(C \subseteq p_\gamma \text{Cl}(A) \), then \(B \cup D \) is a pre \(P_\gamma \)-open set for any nonempty subset \(D \) of \(A \), where \(\gamma \) is pre regular.

Proof. By assumption, we have \(C \subseteq p_\gamma \text{Cl}(B) \cup p_\gamma \text{Cl}(A) = p_\gamma \text{Cl}(B \cup A) \). By Theorem 3.16, we see that \(B \cup D \) is a pre \(P_\gamma \)-open set. \(\square \)

4. Finite \(P_\gamma \)-open sets

In this section, we study some properties of minimal \(P_\gamma \)-open sets in finite \(P_\gamma \)-open sets and \(P_\gamma \)-locally finite spaces.

Proposition 4.1. Let \(X \) be a space and \(\emptyset \neq B \) a finite \(P_\gamma \)-open set in \(X \). Then there exists at least one (finite) minimal \(P_\gamma \)-open set \(A \) such that \(A \subseteq B \).

Proof. Suppose that \(B \) is a finite \(P_\gamma \)-open set in \(X \). Then we have the following two possibilities:

1. \(B \) is a minimal \(P_\gamma \)-open set.
2. \(B \) is not a minimal \(P_\gamma \)-open set.

In case (1), if we choose \(B = A \), then the proposition is proved.

If the case (2) is true, then there exists a nonempty (finite) \(P_\gamma \)-open set \(B_1 \) which is properly contained in \(B \). If \(B_1 \) is minimal \(P_\gamma \)-open, we take \(A = B_1 \). If \(B_1 \) is not a minimal \(P_\gamma \)-open set, then there exists a nonempty (finite) \(P_\gamma \)-open set \(B_2 \) such that \(B_2 \subseteq B_1 \subseteq B \). We continue this process and have a sequence of \(P_\gamma \)-open sets \(B \) such that \(B_2 \subseteq ... \subseteq B_m \subseteq ... \subseteq B_2 \subseteq B_1 \subseteq B \). Since \(B \) is a finite, this process will end in a finite number of steps. That is, for some natural number \(k \), we have a minimal \(P_\gamma \)-open set \(B_k \) such that \(B_k = A \). This completes the proof. \(\square \)

Definition 4.2. A space \(X \) is said to be a \(P_\gamma \)-locally finite space, if for each \(x \in X \) there exists a finite \(P_\gamma \)-open set \(A \) in \(X \) such that \(x \in A \).

Corollary 4.3. Let \(X \) be a \(P_\gamma \)-locally finite space and \(B \) a nonempty \(P_\gamma \)-open set. Then there exists at least one (finite) minimal \(P_\gamma \)-open set \(A \) such that \(A \subseteq B \), where \(\gamma \) is pre regular.
Proof. Since B is a nonempty set, there exists an element x of B. Since X is a P_γ-locally finite space, we have a finite P_γ-open set B_x such that $x \in B_x$. Since $B \cap B_x$ is a finite P_γ-open set, we get a minimal P_γ-open set A such that $A \subseteq B \cap B_x \subseteq B$ by Proposition 4.1.

Proposition 4.4. Let X be a space and for any $\alpha \in I$, B_α a P_γ-open set and $\phi \neq A$ a finite P_γ-open set. Then $A \cap (\bigcap_{\alpha \in I} B_\alpha)$ is a finite P_γ-open set, where γ is pre regular.

Proof. We see that there exists an integer n such that $A \cap (\bigcap_{\alpha \in I} B_\alpha) = A \cap (\bigcap_{i=1}^{n} B_\alpha)$ and hence we have the result.

Using Proposition 4.4, we can prove the following:

Theorem 4.5. Let X be a space and for any $\alpha \in I$, B_α a P_γ-open set and for any $\beta \in J$, A_β a nonempty finite P_γ-open set. Then $(\bigcup_{\beta \in J} A_\beta) \cap (\bigcap_{\alpha \in I} B_\alpha)$ is a P_γ-open set, where γ is pre regular.

5. Applications

Let A be a nonempty finite P_γ-open set. It is clear, by Proposition 3.3 and Proposition 4.1, that if γ is pre regular, then there exists a natural number m such that $\{A_1, A_2, ..., A_m\}$ is the class of all minimal P_γ-open sets in A satisfying the following two conditions:

1. For any l, n with $1 \leq l, n \leq m$ and $l \neq n$, $A_l \cap A_n = \phi$.
2. If C is a minimal P_γ-open set in A, then there exists l with $1 \leq l \leq m$ such that $C = A_l$.

Theorem 5.1. Let X be a space and $\phi \neq A$ a finite P_γ-open set such that A is not a minimal P_γ-open set. Let $\{A_1, A_2, ..., A_m\}$ be a class of all minimal P_γ-open sets in A and $y \in A \setminus (A_1 \cup A_2 \cup ... \cup A_m)$. Define $A_y = \bigcap \{B : B$ is a P_γ-open neighborhood of $y]\}$. Then there exists a natural number $k \in \{1, 2, ..., m\}$ such that A_k is contained in A_y, where γ is pre regular.

Proof. Suppose on the contrary that for any natural number $k \in \{1, 2, ..., m\}$, A_k is not contained in A_y. By Corollary 3.8, for any minimal P_γ-open set A_k in A, $A_k \cap A_y = \phi$. By Proposition 4.4, $\phi \neq A_y$ is a finite P_γ-open set. Therefore by Proposition 4.1, there exists a minimal P_γ-open set C such that $C \subseteq A_y$. Since $C \subseteq A_y \subseteq A$, we have C is a minimal P_γ-open set in A. By supposition, for any minimal P_γ-open set A_k, we have $A_k \cap C \subseteq A_k \cap A_y = \phi$. Therefore for any natural number $k \in \{1, 2, ..., m\}$, $C \neq A_k$. This contradicts our assumption. Hence the proof.

Proposition 5.2. Let X be a space and $\phi \neq A$ be a finite P_γ-open set which is not a minimal P_γ-open set. Let $\{A_1, A_2, ..., A_m\}$ be a class of all minimal P_γ-open sets in A and $y \in A \setminus (A_1 \cup A_2 \cup ... \cup A_m)$. Then there exists a natural number $k \in \{1, 2, ..., m\}$ such that for any P_γ-open neighborhood B_y of y, A_k is contained in B_y, where γ is pre regular.
Proof. This follows from Theorem 5.1, as \(\cap \{ B : B \) is a \(P_\gamma \)-open of \(y \} \subseteq B_y \). Hence the proof.

Theorem 5.3. Let \(X \) be a space and \(\phi \neq A \) be a finite \(P_\gamma \)-open set which is not a minimal \(P_\gamma \)-open set. Let \(\{ A_1, A_2, \ldots, A_m \} \) be the class of all minimal \(P_\gamma \)-open sets in \(A \) and \(y \in A \setminus (A_1 \cup A_2 \cup \ldots \cup A_m) \). Then there exists a natural number \(k \in \{ 1, 2, \ldots, m \} \) such that \(y \in p_\gamma Cl(A_k) \), where \(\gamma \) is pre regular.

Proof. It follows from Proposition 5.2, that there exists a natural number \(k \in \{ 1, 2, \ldots, m \} \) such that \(A_k \subseteq B \) for any \(P_\gamma \)-open neighborhood \(B \) of \(y \). Therefore \(\phi \neq A_k \cap A_k \subseteq A_k \cap B \) implies \(y \in p_\gamma Cl(A_k) \). This completes the proof.

Proposition 5.4. Let \(\phi \neq A \) be a finite \(P_\gamma \)-open set in a space \(X \) and for each \(k \in \{ 1, 2, \ldots, m \} \), \(A_k \) is a minimal \(P_\gamma \)-open set in \(A \). If the class \(\{ A_1, A_2, \ldots, A_m \} \) contains all minimal \(P_\gamma \)-open sets in \(A \), then for any \(\phi \neq B_k \subseteq A_k \), \(A \subseteq p_\gamma Cl(B_1 \cup B_2 \cup \ldots \cup B_m) \), where \(\gamma \) is pre regular.

Proof. If \(A \) is a minimal \(P_\gamma \)-open set, then this is the result of Theorem 3.12 (2). Otherwise \(A \) is not a minimal \(P_\gamma \)-open set. If \(x \) is any element of \(A \setminus (A_1 \cup A_2 \cup \ldots \cup A_m) \), we have \(x \in p_\gamma Cl(A_1) \cup p_\gamma Cl(A_2) \cup \ldots \cup p_\gamma Cl(A_m) \) by Theorem 5.3. Therefore \(A \subseteq p_\gamma Cl(A_1) \cup p_\gamma Cl(A_2) \cup \ldots \cup p_\gamma Cl(A_m) = p_\gamma Cl(B_1) \cup p_\gamma Cl(B_2) \cup \ldots \cup p_\gamma Cl(B_m) = p_\gamma Cl(B_1 \cup B_2 \cup \ldots \cup B_m) \) by Theorem 3.12 (3).

Proposition 5.5. Let \(\phi \neq A \) be a finite \(P_\gamma \)-open set and \(A_k \) is a minimal \(P_\gamma \)-open set in \(A \), for each \(k \in \{ 1, 2, \ldots, m \} \). If for any \(\phi \neq B_k \subseteq A_k \), \(A \subseteq p_\gamma Cl(B_1 \cup B_2 \cup \ldots \cup B_m) \) then \(p_\gamma Cl(A) = p_\gamma Cl(B_1 \cup B_2 \cup \ldots \cup B_m) \).

Proof. For any \(\phi \neq B_k \subseteq A_k \) with \(k \in \{ 1, 2, \ldots, m \} \), we have \(p_\gamma Cl(B_1 \cup B_2 \cup \ldots \cup B_m) \subseteq p_\gamma Cl(A) \). Also, we have \(p_\gamma Cl(A) \subseteq p_\gamma Cl(p_\gamma Cl(B_1 \cup B_2 \cup \ldots \cup B_m)) = p_\gamma Cl(B_1 \cup B_2 \cup \ldots \cup B_m) \). Therefore we have \(p_\gamma Cl(A) = p_\gamma Cl(B_1 \cup B_2 \cup \ldots \cup B_m) \) for any nonempty subset \(B_k \) of \(A_k \) with \(k \in \{ 1, 2, \ldots, m \} \).

Proposition 5.6. Let \(\phi \neq A \) be a finite \(P_\gamma \)-open set and for each \(k \in \{ 1, 2, \ldots, m \} \), \(A_k \) is a minimal \(P_\gamma \)-open set in \(A \). If for any \(\phi \neq B_k \subseteq A_k \), \(p_\gamma Cl(A) = p_\gamma Cl(B_1 \cup B_2 \cup \ldots \cup B_m) \), then the class \(\{ A_1, A_2, \ldots, A_m \} \) contains all minimal \(P_\gamma \)-open sets in \(A \).

Proof. Suppose that \(C \) is a minimal \(P_\gamma \)-open set in \(A \) and \(C \neq A_k \) for \(k \in \{ 1, 2, \ldots, m \} \). Then we have \(C \cap p_\gamma Cl(A_k) = \phi \) for each \(k \in \{ 1, 2, \ldots, m \} \). It follows that any element of \(C \) is not contained in \(p_\gamma Cl(A_1 \cup A_2 \cup \ldots \cup A_m) \). This is a contradiction to the fact that \(C \subseteq A \subseteq p_\gamma Cl(A) = p_\gamma Cl(B_1 \cup B_2 \cup \ldots \cup B_m) \). This completes the proof.

Combining Proposition 5.4, 5.5 and 5.6, we have the following theorem:

Theorem 5.7. Let \(A \) be a nonempty finite \(P_\gamma \)-open set and \(A_k \) a minimal \(P_\gamma \)-open set in \(A \) for each \(k \in \{ 1, 2, \ldots, m \} \). Then the following three conditions are equivalent:
Theorem 5.9. Then we have the result. □

Let \(P \) there exists finite

Proposition 4.1, there exists the class

Theorem 5.8. \(\{ \) of all minimal \(P \) -open sets in \(A \).

Then by Theorem 5.7, we have \(\gamma \) is pre regular.

Suppose that \(\phi \neq A \) is a finite \(P \gamma \)-open set and \(\{ A_1, A_2, \ldots, A_m \} \) is a class of all minimal \(P \gamma \)-open sets in \(A \) such that for each \(k \in \{ 1, 2, \ldots, m \} \), \(y_k \in A_k \). Then by Theorem 5.7, it is clear that \(\{ y_1, y_2, \ldots, y_m \} \) is a pre \(P \gamma \)-open set.

Theorem 5.8. Let \(A \) be a nonempty finite \(P \gamma \)-open set and \(\{ A_1, A_2, \ldots, A_m \} \) is a class of all minimal \(P \gamma \)-open sets in \(A \). Let \(B \) be any subset of \(A \setminus (A_1 \cup A_2 \cup \ldots \cup A_m) \) and \(B_k \) be any nonempty subset of \(A_k \) for each \(k \in \{ 1, 2, \ldots, m \} \). Then \(B \cup B_1 \cup B_2 \cup \ldots \cup B_m \) is a pre \(P \gamma \)-open set.

Proof. By Theorem 5.7, we have

\[
A \subseteq p_\gamma \text{Cl}(B_1 \cup B_2 \cup \ldots \cup B_m) \subseteq p_\gamma \text{Cl}(B \cup B_1 \cup B_2 \cup \ldots \cup B_m).
\]

Since \(A \) is a \(P \gamma \)-open set, then we have

\[
B \cup B_1 \cup B_2 \cup \ldots \cup B_m \subseteq A = p_\gamma \text{Int}(A) \subseteq p_\gamma \text{Int}(p_\gamma \text{Cl}(B \cup B_1 \cup B_2 \cup \ldots \cup B_m)).
\]

Then we have the result. □

Theorem 5.9. Let \(X \) be a \(P \gamma \)-locally finite space. If a minimal \(P \gamma \)-open set \(A \subseteq X \) has more than one element, then \(X \) is a pre \(P \gamma \)-Hausdorff space, where \(\gamma \) is pre regular.

Proof. Let \(x, y \in X \) such that \(x \neq y \). Since \(X \) is a \(P \gamma \)-locally finite space, there exists finite \(P \gamma \)-open sets \(U \) and \(V \) such that \(x \in U \) and \(y \in V \). By Proposition 4.1, there exists the class \(\{ U_1, U_2, \ldots, U_n \} \) of all minimal \(P \gamma \)-open sets in \(U \) and the class \(\{ V_1, V_2, \ldots, V_m \} \) of all minimal \(P \gamma \)-open sets in \(V \). We consider three possibilities:

1. If there exists \(i \) of \(\{ 1, 2, \ldots, n \} \) and \(j \) of \(\{ 1, 2, \ldots, m \} \) such that \(x \in U_i \) and \(y \in V_j \), then by Theorem 3.15, \(\{ x \} \) and \(\{ y \} \) are disjoint pre \(P \gamma \)-open sets which contains \(x \) and \(y \), respectively.
2. If there exists \(i \) of \(\{ 1, 2, \ldots, n \} \) such that \(x \in U_i \) and \(y \notin V_j \) for any \(j \) of \(\{ 1, 2, \ldots, m \} \), then we find an element \(y_j \) of \(V_j \) for each \(j \) such that \(\{ x \} \) and \(\{ y, y_1, y_2, \ldots, y_m \} \) are pre \(P \gamma \)-open sets and \(\{ x \} \cap \{ y, y_1, y_2, \ldots, y_m \} = \emptyset \) by Theorems 3.15, 5.8 and the assumption.
3. If \(x \notin U_i \) for any \(i \) of \(\{ 1, 2, \ldots, n \} \) and \(y \notin V_j \) for any \(j \) of \(\{ 1, 2, \ldots, m \} \), then we find elements \(x_i \) of \(U_i \) and \(y_j \) of \(V_j \) for each \(i, j \) such that \(\{ x, x_1, x_2, \ldots, x_n \} \) and \(\{ y, y_1, y_2, \ldots, y_m \} \) are pre \(P \gamma \)-open sets and \(\{ x, x_1, x_2, \ldots, x_n \} \cap \{ y, y_1, y_2, \ldots, y_m \} = \emptyset \) by Theorem 5.8 and the assumption. Hence \(X \) is a pre \(P \gamma \)-Hausdorff space.
REFERENCES

Department of Mathematics, College of Science, University of Duhok, Kurdistan-Region, Iraq

E-mail address: aliasbkhalaf@gmail.com

Department of Mathematics, Faculty of Science, University of Zakho, Kurdistan-Region, Iraq

E-mail address: hariwan_math@yahoo.com