FOUR-DIMENSIONAL MATRIX TRANSFORMATION AND A–STATISTICAL FUZZY KOROVKIN TYPE APPROXIMATION

KAMIL DEMIRCI AND SEVDA KARAKUŞ

Abstract. In this paper, we prove a fuzzy Korovkin-type approximation theorem for fuzzy positive linear operators by using A-statistical convergence for four-dimensional summability matrices. Also we obtain rates of A-statistical convergence of a double sequence of fuzzy positive linear operators for four-dimensional summability matrices.

1. Introduction

Anastassiou [3] first introduced the fuzzy analogue of the classical Korovkin theory (see also [1], [2], [4], [10]). Recently, some statistical fuzzy approximation theorems have been obtained by using the concept of statistical convergence (see, [5], [8]). In this paper, we prove a fuzzy Korovkin-type approximation theorem for fuzzy positive linear operators by using A-statistical convergence for four-dimensional summability matrices. Then, we construct an example such that our new approximation result works but its classical case does not work. Also we obtain rates of A-statistical convergence of a double sequence of fuzzy positive linear operators for four-dimensional summability matrices.

We now recall some basic definitions and notations used in the paper.

A fuzzy number is a function \(\mu : \mathbb{R} \to [0,1] \), which is normal, convex, upper semi-continuous and the closure of the set \(\text{supp}(\mu) \) is compact, where \(\text{supp}(\mu) := \{ x \in \mathbb{R} : \mu(x) > 0 \} \). The set of all fuzzy numbers are denoted by \(\mathbb{R}_F \).

Let
\[
[\mu]^0 = \{ x \in \mathbb{R} : \mu(x) > 0 \} \quad \text{and} \quad [\mu]^r = \{ x \in \mathbb{R} : \mu(x) > r \}, \quad (0 < r < 1).
\]
Then, it is well-known [11] that, for each \(r \in [0,1] \), the set \([\mu]^r \) is a closed and bounded interval of \(\mathbb{R} \). For any \(u, v \in \mathbb{R}_F \) and \(\lambda \in \mathbb{R} \), it is possible to define uniquely the sum \(u \oplus v \) and the product \(\lambda \odot u \) as follows:
\[
[u \oplus v]^r = [u]^r + [v]^r \quad \text{and} \quad [\lambda \odot u]^r = \lambda [u]^r, \quad (0 \leq r \leq 1).
\]

Now denote the interval \([u]^r \) by \([u_-, u_+]^r\), where \(u_-(r) \leq u_+(r) \) and \(u_-(r), u_+(r) \in \mathbb{R} \) for \(r \in [0,1] \). Then, for \(u, v \in \mathbb{R}_F \), define
\[
u \leq v \iff u_-(r) \leq v_-(r) \leq u_+(r) \leq v_+(r) \text{ for all } 0 \leq r \leq 1.
\]
Define also the following metric \(D : \mathbb{R}_F \times \mathbb{R}_F \to \mathbb{R}_+ \) by
\[
D(u, v) = \sup_{r \in [0,1]} \max \left\{ \left| u_-(r) - v_-(r) \right|, \left| u_+(r) - v_+(r) \right| \right\}.
\]

Key words and phrases. A–statistical convergence for double sequences, fuzzy positive linear operators, fuzzy Korovkin theory, rates of A–statistical convergence for double sequences, regularity for double sequences.

2010 Mathematics Subject Classification. 26E50, 41A25, 41A36, 40G15.
Hence, \((\mathbb{R}^2, D)\) is a complete metric space\([18]\).

A double sequence \(x = \{x_{m,n}\}, \ m,n \in \mathbb{N}\), is convergent in Pringsheim’s sense if, for every \(\varepsilon > 0\), there exists \(N = N(\varepsilon) \in \mathbb{N}\) such that \(|x_{m,n} - L| < \varepsilon\) whenever \(m,n > N\). Then, \(L\) is called the Pringsheim limit of \(x\) and is denoted by \(P\lim_{m,n} x_{m,n} = L\) (see \([16]\)). In this case, we say that \(x = \{x_{m,n}\}\) is “\(P\)-convergent to \(L\)”. Also, if there exists a positive number \(M\) such that \(|x_{m,n}| \leq M\) for all \((m,n) \in \mathbb{N}^2 = \mathbb{N} \times \mathbb{N}\), then \(x = \{x_{m,n}\}\) is said to be bounded. Note that in contrast to the case for single sequences, a convergent double sequence need not to be bounded. A double sequence \(x = \{x_{m,n}\}\) is said to be non-increasing in Pringsheim’s sense if, for all \((m,n)\) \(\in \mathbb{N}^2\), \(x_{m+1,n+1} \leq x_{m,n}\).

Now let \(A = [a_{j,k,m,n}]\), \(j,k,m,n \in \mathbb{N}\), be a four-dimensional summability matrix. For a given double sequence \(x = \{x_{m,n}\}\), the \(A\)-transform of \(x\), denoted by \(Ax : = \{(Ax)_{j,k}\}\), is given by

\[
(Ax)_{j,k} = \sum_{(m,n) \in \mathbb{N}^2} a_{j,k,m,n} x_{m,n}, \quad j,k \in \mathbb{N},
\]

provided the double series converges in Pringsheim’s sense for every \((j,k) \in \mathbb{N}^2\). In summability theory, a two-dimensional matrix transformation is said to be regular if it maps every convergent sequence into a convergent sequence with the same limit. The well-known characterization for two dimensional matrix transformations is known as Silverman-Toeplitz conditions (see, for instance, \([13]\)). In 1926, Robison \([17]\) presented a four dimensional analog of the regularity by considering an additional assumption of boundedness. This assumption was made because a double \(P\)-convergent sequence is not necessarily bounded. The definition and the characterization of regularity for four dimensional matrices is known as Robison-Hamilton conditions, or briefly, \(RH\)-regularity (see, \([12]\), \([17]\)).

Recall that a four dimensional matrix \(A = [a_{j,k,m,n}]\) is said to be \(RH\)-regular if it maps every bounded \(P\)-convergent sequence into a \(P\)-convergent sequence with the same \(P\)-limit. The Robison-Hamilton conditions state that a four dimensional matrix \(A = [a_{j,k,m,n}]\) is \(RH\)-regular if and only if

\[
\begin{align*}
(i) \quad & P \lim_{j,k} a_{j,k,m,n} = 0 \text{ for each } (m,n) \in \mathbb{N}^2, \\
(ii) \quad & P \lim_{j,k} \sum_{(m,n) \in \mathbb{N}^2} a_{j,k,m,n} = 1, \\
(iii) \quad & P \lim_{j,k} \sum_{m \in \mathbb{N}} |a_{j,k,m,n}| = 0 \text{ for each } n \in \mathbb{N}, \\
(iv) \quad & P \lim_{j,k} \sum_{n \in \mathbb{N}} |a_{j,k,m,n}| = 0 \text{ for each } m \in \mathbb{N}, \\
(v) \quad & \sum_{(m,n) \in \mathbb{N}^2} |a_{j,k,m,n}| \text{ is } P\text{-convergent } (j,k) \in \mathbb{N}^2, \\
(vi) \quad & \text{there exist finite positive integers } A \text{ and } B \text{ such that } \sum_{m,n>B} |a_{j,k,m,n}| < A \text{ holds for every } (j,k) \in \mathbb{N}^2.
\end{align*}
\]
Now let $A = [a_{j,k,m,n}]$ be a non-negative RH-regular summability matrix, and let $K \subseteq \mathbb{N}^2$. Then, a double sequence $\{x_{m,n}\}$ of fuzzy numbers is said to be A-statistically convergent to a fuzzy number $L \in \mathbb{R}_F$ if, for every $\varepsilon > 0$,

$$P - \lim_{j,k} \sum_{(m,n) \in K(\varepsilon)} a_{j,k,m,n} = 0,$$

where

$$K(\varepsilon) := \{(m, n) \in \mathbb{N}^2 : D(x_{m,n}, L) \geq \varepsilon\}.$$

In this case we write $st^2(A) - \lim_{m,n} x_{m,n} = L$.

We should note that if we take $A = C(1; 1) := [c_{j,k,m,n}]$, the double Cesáro matrix, defined by

$$c_{j,k,m,n} = \begin{cases} \frac{1}{j}, & \text{if } 1 \leq m \leq j \text{ and } 1 \leq n \leq k, \\ 0, & \text{otherwise}, \end{cases}$$

then $C(1; 1)$–statistical convergence coincides with the notion of statistical convergence for double sequence, which was introduced in [14], [15]. Finally, if we replace the matrix A by the identity matrix for four-dimensional matrices, then A–statistical convergence reduces to the Pringsheim convergence [16].

2. A-Statistical Fuzzy Korovkin Type Approximation

Let the real numbers $a; b; c; d$ so that $a < b, c < d$, and $U := [a; b] \times [c; d]$. Let $C(U)$ denote the space of all real valued continuous functions on U endowed with the supremum norm

$$\|f\| = \sup_{(x,y) \in U} |f(x,y)|, \ (f \in C(U)).$$

Assume that $f : U \to \mathbb{R}_F$ be a fuzzy number valued function. Then f is said to be fuzzy continuous at $x_0 := (x_0, y_0) \in U$ whenever $P - \lim_{m,n} x_{m,n} = x_0$, then $P - \lim D(f(x_{m,n}), f(x_0)) = 0$. If it is fuzzy continuous at every point $(x, y) \in U$, we say that f is fuzzy continuous on U. The set of all fuzzy continuous functions on U is denoted by $C_F(U)$. Note that $C_F(U)$ is a vector space. Now let $L : C_F(U) \to C_F(U)$ be an operator. Then L is said to be fuzzy linear if, for every $\lambda_1, \lambda_2 \in \mathbb{R}$ having the same sign and for every $f_1, f_2 \in C_F(U)$, and $(x, y) \in U$,

$$L(\lambda_1 \odot f_1 \oplus \lambda_2 \odot f_2 ; x, y) = \lambda_1 \odot L(f_1 ; x, y) \oplus \lambda_2 \odot L(f_2 ; x, y)$$

holds. Also L is called fuzzy positive linear operator if it is fuzzy linear and, the condition $L(f ; x, y) \leq L(g ; x, y)$ is satisfied for any $f, g \in C_F(U)$ and all $(x, y) \in U$ with $f(x, y) \leq g(x, y)$. Also, if $f, g : U \to \mathbb{R}_F$ are fuzzy number valued functions, then the distance between f and g is given by

$$D^*(f, g) = \sup_{(x,y) \in U} \sup_{r \in [0,1]} \max \left\{ \left| f_+^{(r)} - g_+^{(r)} \right|, \left| f_-^{(r)} - g_-^{(r)} \right| \right\}$$

(see for details, [1], [2], [3], [4], [9], [10]). Throughout the paper we use the test functions given by

$$f_0(x, y) = 1, \ f_1(x, y) = x, \ f_2(x, y) = y, \ f_3(x, y) = x^2 + y^2.$$
Theorem 2.1. Let $A = [a_{j,k,m,n}]$ be a non-negative RH-regular summability matrix and let $\{L_{m,n}\}_{(m,n)\in \mathbb{N}^2}$ be a double sequence of fuzzy positive linear operators from $C_F(U)$ into itself. Assume that there exists a corresponding sequence $\{\tilde{L}_{m,n}\}_{(m,n)\in \mathbb{N}^2}$ of positive linear operators from $C(U)$ into itself with the property

$$(2.1) \quad \{L_{m,n}(f; x, y)\}_{i=\pm} = \tilde{L}_{m,n}(f_{i}; x, y)$$

for all $(x, y) \in U$, $r \in [0, 1]$, $(m, n) \in \mathbb{N}^2$ and $f \in C_F(U)$. Assume further that

$$(2.2) \quad s_{\ell^2(A)} - \lim_{m,n \to \infty} \|\tilde{L}_{m,n}(f_i) - f_i\| = 0 \quad \text{for each} \quad i = 0, 1, 2, 3.$$

Then, for all $f \in C_F(U)$, we have

$$s_{\ell^2(A)} - \lim_{m,n \to \infty} D^*(L_{m,n}(f), f) = 0.$$

Proof. Let $f \in C_F(U)$, $(x, y) \in U$ and $r \in [0, 1]$. By the hypothesis, since $f_{i}^{(r)} \in C(U)$, we can write, for every $\varepsilon > 0$, that there exists a number $\delta > 0$ such that $|f_{\pm}^{(r)}(u, v) - f_{\pm}^{(r)}(x, y)| < \varepsilon$ holds for every $(u, v) \in U$ satisfying $|u - x| < \delta$ and $v - y| < \delta$. Then we immediately get for all $(u, v) \in U$, that

$$|f_{\pm}^{(r)}(u, v) - f_{\pm}^{(r)}(x, y)\| \leq \varepsilon + \frac{2M_{\pm}^{(r)}}{\delta^2} \left\{ (u-x)^2 + (v-y)^2 \right\},$$

where $M_{\pm}^{(r)} := \|f_{\pm}^{(r)}\|$. Now, using the linearity and the positivity of the operators $\tilde{L}_{m,n}$, we have, for each $(m, n) \in \mathbb{N}^2$, that

$$\left| \tilde{L}_{m,n}(f_{\pm}^{(r)}; x, y) - f_{\pm}^{(r)}(x, y) \right|$$

$$\leq \tilde{L}_{m,n} \left| f_{\pm}^{(r)}(u, v) - f_{\pm}^{(r)}(x, y) \right| \pm M_{\pm}^{(r)} \left| \tilde{L}_{m,n}(f_0; x, y) - f_0(x, y) \right|$$

$$\leq \tilde{L}_{m,n} \left(\varepsilon + \frac{2M_{\pm}^{(r)}}{\delta^2} \left\{ (u-x)^2 + (v-y)^2 \right\} \right) \pm M_{\pm}^{(r)} \left| \tilde{L}_{m,n}(f_0; x, y) - f_0(x, y) \right|$$

$$\leq \varepsilon + \left(\varepsilon + M_{\pm}^{(r)} \right) \left| \tilde{L}_{m,n}(f_0; x, y) - f_0(x, y) \right| + \frac{2M_{\pm}^{(r)}}{\delta^2} \left| \tilde{L}_{m,n}(f_0; x, y) - f_0(x, y) \right|$$
\[
\begin{align*}
\leq & \varepsilon + \left(\varepsilon + M_{+}^{(r)} \right) \left| \tilde{L}_{m,n} (f_0; x, y) - f_0 (x, y) \right| + \frac{2M_{+}^{(r)}}{\delta^2} \left\{ \left| \tilde{L}_{m,n} (f_3; x, y) - f_3 (x, y) \right| \\
& + 2x^2 \left| \tilde{L}_{m,n} (f_1; x, y) - f_1 (x, y) \right| + 2y^2 \left| \tilde{L}_{m,n} (f_2; x, y) - f_2 (x, y) \right| + \\
& + (x^2 + y^2) \left| \tilde{L}_{m,n} (f_0; x, y) - f_0 (x, y) \right| \right\} \\
& \leq \varepsilon + \left(\varepsilon + M_{+}^{(r)} + \frac{2M_{+}^{(r)}}{\delta^2} (x^2 + y^2) \right) \left| \tilde{L}_{m,n} (f_0; x, y) - f_0 (x, y) \right| \\
& + \frac{4M_{+}^{(r)}}{\delta^2} x^2 \left| \tilde{L}_{m,n} (f_1; x, y) - f_1 (x, y) \right| + \frac{4M_{+}^{(r)}}{\delta^2} y^2 \left| \tilde{L}_{m,n} (f_2; x, y) - f_2 (x, y) \right| \\
& + \frac{2M_{+}^{(r)}}{\delta^2} \left| \tilde{L}_{m,n} (f_3; x, y) - f_3 (x, y) \right| \\
& \leq \varepsilon + K_{+}^{(r)} (\varepsilon) \left\{ \left| \tilde{L}_{m,n} (f_0; x, y) - f_0 (x, y) \right| + \left| \tilde{L}_{m,n} (f_1; x, y) - f_1 (x, y) \right| \\
& + \left| \tilde{L}_{m,n} (f_2; x, y) - f_2 (x, y) \right| + \left| \tilde{L}_{m,n} (f_3; x, y) - f_3 (x, y) \right| \right\} \\
\end{align*}
\]

where \(K_{+}^{(r)} (\varepsilon) := \max \left\{ \varepsilon + M_{+}^{(r)} + \frac{2M_{+}^{(r)}}{\delta^2} (A^2 + B^2), \frac{4M_{+}^{(r)}}{\delta^2} A, \frac{4M_{+}^{(r)}}{\delta^2} B, \frac{2M_{+}^{(r)}}{\delta^2} \right\} \), \(A := \max \{|a|, |b|\}, B := \max \{|c|, |d|\} \). Also taking supremum over \((x, y) \in U\), the above inequality implies that

\[(2.3) \quad \left| \tilde{L}_{m,n} (f_+^{(r)}) - f_+^{(r)} \right| \leq \varepsilon + K_{+}^{(r)} (\varepsilon) \left\{ \left| \tilde{L}_{m,n} (f_0) - f_0 \right| + \left| \tilde{L}_{m,n} (f_1) - f_1 \right| \\
+ \left| \tilde{L}_{m,n} (f_2) - f_2 \right| + \left| \tilde{L}_{m,n} (f_3) - f_3 \right| \right\}. \]

Now, it follows from (2.1) that

\[
D^a (L_{m,n} (f), f) = \sup_{(x, y) \in U} D (L_{m,n} (f; x, y), f (x, y)) \\
= \sup_{(x, y) \in U} \sup_{r \in [0,1]} \max \left\{ \left| \tilde{L}_{m,n} (f^{(r)}; x, y) - f^{(r)} (x, y) \right|, \left| \tilde{L}_{m,n} (f_+^{(r)}; x, y) - f_+^{(r)} (x, y) \right| \right\} \\
= \sup_{r \in [0,1]} \max \left\{ \left| \tilde{L}_{m,n} (f^{(r)}) - f^{(r)} \right|, \left| \tilde{L}_{m,n} (f_+^{(r)}) - f_+^{(r)} \right| \right\}.
\]
Combining the above equality with (2.3), we have

\[(2.4) \quad D^* \left(L_{m,n} (f), f \right) \leq \varepsilon + K(\varepsilon) \left\{ \left\| \tilde{L}_{m,n} (f_0) - f_0 \right\| + \left\| \tilde{L}_{m,n} (f_1) - f_1 \right\| + \left\| \tilde{L}_{m,n} (f_2) - f_2 \right\| + \left\| \tilde{L}_{m,n} (f_3) - f_3 \right\| \right\} \]

where \(K(\varepsilon) := \sup_{r \in [0,1]} \max \left\{ K^r_-(\varepsilon), K^r_+(\varepsilon) \right\} \).

Now, for a given \(r > 0 \), choose \(\varepsilon > 0 \) such that \(0 < \varepsilon < r \), and also define the following sets:

\[\begin{align*}
G & : = \left\{ (m,n) \in \mathbb{N}^2 : D^* \left(L_{m,n} (f), f \right) \geq r \right\}, \\
G_0 & : = \left\{ (m,n) \in \mathbb{N}^2 : \left\| \tilde{L}_{m,n} (f_0) - f_0 \right\| \geq \frac{r - \varepsilon}{4K(\varepsilon)} \right\}, \\
G_1 & : = \left\{ (m,n) \in \mathbb{N}^2 : \left\| \tilde{L}_{m,n} (f_1) - f_1 \right\| \geq \frac{r - \varepsilon}{4K(\varepsilon)} \right\}, \\
G_2 & : = \left\{ (m,n) \in \mathbb{N}^2 : \left\| \tilde{L}_{m,n} (f_2) - f_2 \right\| \geq \frac{r - \varepsilon}{4K(\varepsilon)} \right\}, \\
G_3 & : = \left\{ (m,n) \in \mathbb{N}^2 : \left\| \tilde{L}_{m,n} (f_3) - f_3 \right\| \geq \frac{r - \varepsilon}{4K(\varepsilon)} \right\}.
\end{align*} \]

Then inequality (2.4) gives

\[
G \subseteq G_0 \cup G_1 \cup G_2 \cup G_3
\]

which guarantees that, for each \((j, k) \in \mathbb{N}^2\)

\[
(2.5) \quad \sum_{(m,n) \in G} a_{j,k,m,n} \leq \sum_{(m,n) \in G_0} a_{j,k,m,n} + \sum_{(m,n) \in G_1} a_{j,k,m,n} + \sum_{(m,n) \in G_2} a_{j,k,m,n} + \sum_{(m,n) \in G_3} a_{j,k,m,n}.
\]

If we take as \(j, k \to \infty \) on the both sides of inequality (2.5) and use the hypothesis (2.2), we immediately see that

\[
\lim_{j,k} \sum_{(m,n) \in G} a_{j,k,m,n} = 0
\]

whence the result.

If \(A = I \), the identity matrix, then we obtain the following new fuzzy Korovkin theorem in Pringsheim’s sense.

Theorem 2.2. Let \(\{ L_{m,n} \}_{(m,n) \in \mathbb{N}^2} \) be a double sequence of fuzzy positive linear operators from \(C_F (U) \) into itself. Assume that there exists a corresponding sequence \(\{ \tilde{L}_{m,n} \}_{(m,n) \in \mathbb{N}^2} \) of positive linear operators from \(C(U) \) into itself with the property (2.1). Assume further that

\[
P - \lim_{m,n \to \infty} \left\| \tilde{L}_{m,n} (f_i) - f_i \right\| = 0 \quad \text{for each} \quad i = 0, 1, 2, 3.
\]

Then, for all \(f \in C_F (U) \), we have

\[
P - \lim_{m,n \to \infty} D^* \left(L_{m,n} (f), f \right) = 0.
\]
We now show that our result Theorem 2.1 stronger than its classical (Theorem 2.2) version.

Example 2.1. Take \(A = C(1, 1) := [c_{j, k, m, n}] \), the double Cesáro matrix, and define the double sequence \(\{u_{m, n}\} \) by

\[
u_{m, n} = \begin{cases} \sqrt{mn}, & \text{if } m \text{ and } n \text{ are square,} \\ 0, & \text{otherwise.} \end{cases}
\]

We observe that, \(\text{st}_{C(1,1)}^{(2)} \lim_{m, n \to \infty} u_{m, n} = 0 \). But \(\{u_{m, n}\} \) is neither \(P \)-convergent nor bounded. Then consider the Fuzzy Bernstein-type polynomials as follows:

\[
B_{m,n}^{(2)} (f; x, y) = (1 + u_{m, n}) \sum_{s=0}^{m} \sum_{t=0}^{n} \left(\frac{m}{s} \right) \left(\frac{n}{t} \right) x^s y^t (1 - x)^{m-s} (1 - y)^{n-t} f \left(\frac{s}{m}, \frac{t}{n} \right),
\]

where \(f \in C_x(U) \), \((x, y) \in U \), \((m, n) \in \mathbb{N}^2 \). In this case, we write

\[
\left\{ B_{m,n}^{(r)} (f; x, y) \right\}_{r=1}^{(r)} = \tilde{B}_{m,n} \left(f_{r}^{(r)} ; x \right)
\]

\[\quad = (1 + u_{m, n}) \sum_{s=0}^{m} \sum_{t=0}^{n} \left(\frac{m}{s} \right) \left(\frac{n}{t} \right) x^s y^t (1 - x)^{m-s} (1 - y)^{n-t} f_{r}^{(r)} \left(\frac{s}{m}, \frac{t}{n} \right),\]

where \(f_{r}^{(r)} \in C(U) \). Then, we get

\[
\begin{align*}
\tilde{B}_{m,n} (f_0; x) &= (1 + u_{m, n}) f_0 (x, y), \\
\tilde{B}_{m,n} (f_1; x) &= (1 + u_{m, n}) f_1 (x, y), \\
\tilde{B}_{m,n} (f_2; x) &= (1 + u_{m, n}) f_2 (x, y), \\
\tilde{B}_{m,n} (f_3; x) &= (1 + u_{m, n}) \left(f_3 (x, y) + \frac{x^2}{m} + \frac{y^2}{n} \right).
\end{align*}
\]

So we conclude that

\[
\text{st}_{C(1,1)}^{(2)} \lim_{m, n \to \infty} \left\| \tilde{B}_{m,n} (f_i) - f_i \right\| = 0 \quad \text{for each } i = 0, 1, 2, 3.
\]

By Theorem 2.1, we obtain for all \(f \in C_x(U) \), that

\[
\text{st}_{C(1,1)}^{(2)} \lim_{m, n \to \infty} D^* \left(B_{m,n}^{(r)} (f) , f \right) = 0.
\]

However, since the sequence \(\{u_{m, n}\} \) is not convergent (in the Pringsheim’s sense), we conclude that Theorem 2.2 do not work for the operators \(\left\{ B_{m,n}^{(r)} (f; x, y) \right\} \) in (2.6) while our Theorem 2.1 still works.

3. A-Statistical Fuzzy Rates

Various ways of defining rates of convergence in the \(A \)-statistical sense for two-dimensional summability matrices were introduced in [7]. In a similar way, we obtain fuzzy approximation theorems based on \(A \)-statistical rates for four-dimensional summability matrices.
Definition 3.1. Let $A = [a_{j,k,m,n}]$ be a non-negative RH-regular summability matrix and let $\{\alpha_{m,n}\}$ be a positive non-increasing double sequence. A double sequence $x = \{x_{m,n}\}$ is A-statistically convergent to a fuzzy number L with the rate of $o(\alpha_{m,n})$ if for every $\varepsilon > 0$,

$$P - \lim_{j,k \to \infty} \frac{1}{\alpha_{j,k}} \sum_{(m,n) \in K(\varepsilon)} a_{j,k,m,n} = 0,$$

where

$$K(\varepsilon) := \{(m,n) \in \mathbb{N}^2 : D(x_{m,n}, L) \geq \varepsilon\}.$$

In this case, we write $D(x_{m,n}, L) = st^2_{(A)} - o(\alpha_{m,n})$ as $m, n \to \infty$.

Definition 3.2. Let $A = [a_{j,k,m,n}]$ and $\{\alpha_{m,n}\}$ be the same as in Definition 3.1. Then, a double sequence $x = \{x_{m,n}\}$ is A-statistically convergent to a fuzzy number L with the rate of $o_m(\alpha_{m,n})$ if for every $\varepsilon > 0$,

$$P - \lim_{j,k \to \infty} \sum_{(m,n) \in M(\varepsilon)} a_{j,k,m,n} = 0,$$

where

$$M(\varepsilon) := \{(m,n) \in \mathbb{N}^2 : D(x_{m,n}, L) \geq \varepsilon \alpha_{m,n}\}.$$

In this case, we write $D(x_{m,n}, L) = st^2_{(A)} - o_m(\alpha_{m,n})$ as $m, n \to \infty$.

Note that the rate of convergence given by Definition 3.1 is more controlled by the entries of the summability matrices rather than the terms of the sequence $x = \{x_{m,n}\}$. However, according to the statistical rate given by Definition 3.2, the rate is mainly controlled by the terms of the fuzzy sequence $x = \{x_{m,n}\}$.

Also, we can give the corresponding A-statistical rates of real sequence $\{x_{m,n}\}$.

Definition 3.3. [6] Let $A = [a_{j,k,m,n}]$ be a non-negative RH-regular summability matrix and let $\{\alpha_{m,n}\}$ be a positive non-increasing double sequence. A double sequence $x = \{x_{m,n}\}$ is A-statistically convergent to a number L with the rate of $o(\alpha_{m,n})$ if for every $\varepsilon > 0$,

$$P - \lim_{j,k \to \infty} \frac{1}{\alpha_{j,k}} \sum_{(m,n) \in K(\varepsilon)} a_{j,k,m,n} = 0,$$

where

$$K(\varepsilon) := \{(m,n) \in \mathbb{N}^2 : |x_{m,n} - L| \geq \varepsilon\}.$$

In this case, we write $x_{m,n} - L = st^2_{(A)} - o(\alpha_{m,n})$ as $m, n \to \infty$.

Definition 3.4. [6] Let $A = [a_{j,k,m,n}]$ and $\{\alpha_{m,n}\}$ be the same as in Definition 3.3. Then, a double sequence $x = \{x_{m,n}\}$ is A-statistically convergent to a number L with the rate of $o_m(\alpha_{m,n})$ if for every $\varepsilon > 0$,

$$P - \lim_{j,k \to \infty} \sum_{(m,n) \in M(\varepsilon)} a_{j,k,m,n} = 0,$$

where

$$M(\varepsilon) := \{(m,n) \in \mathbb{N}^2 : |x_{m,n} - L| \geq \varepsilon \alpha_{m,n}\}.$$
In this case, we write
\[x_{m,n} - L = st^2_{(A)} - o_{m,n}(a_{m,n}) \text{ as } m,n \to \infty. \]

Then we have the following.

Theorem 3.1. Let \(A = [a_{j,k,m,n}] \) be a non-negative RH-regular summability matrix and let \(\{L_{m,n}\}_{(m,n) \in \mathbb{N}^2} \) be a double sequence of fuzzy positive linear operators from \(C_{[0,1]}(U) \) into itself. Assume that there exists a corresponding sequence \(\{\tilde{L}_{m,n}\}_{(m,n) \in \mathbb{N}^2} \) of positive linear operators from \(C(U) \) into itself with the property (2.1). Assume further that \(\{\alpha_{i,m,n}\}_{(m,n) \in \mathbb{N}^2}, i = 0,1,2,3 \) are non-increasing sequences of positive real numbers. If, for each \(i = 0,1,2,3 \)

\[\tag{3.1} \left\| \tilde{L}_{m,n}(f_i) - f_i \right\| = st^2_{(A)} - o(\alpha_{i,m,n}) \text{ as } m,n \to \infty \]

then, for all \(f \in C_{[0,1]}(U) \), we have

\[\tag{3.2} D^*(L_{m,n}(f), f) = st^2_{(A)} - o(\gamma_{m,n}) \text{ as } m,n \to \infty \]

where \(\gamma_{m,n} := \max_{0 \leq i \leq 3} \{\alpha_{i,m,n}\} \) for every \((m,n) \in \mathbb{N}^2\).

Proof. Let \(f \in C_{[0,1]}(U) \), \((x,y) \in U\) and \(r \in [0,1] \). Then, we immediately see from Theorem 2.1's proof that, for every \(\varepsilon > 0 \),

\[\tag{3.3} D^*(L_{m,n}(f), f) \leq \varepsilon + K(\varepsilon) \left\{ \left\| \tilde{L}_{m,n}(f_0) - f_0 \right\| + \left\| \tilde{L}_{m,n}(f_1) - f_1 \right\| + \left\| \tilde{L}_{m,n}(f_2) - f_2 \right\| + \left\| \tilde{L}_{m,n}(f_3) - f_3 \right\| \right\} \]

where \(K(\varepsilon) := \sup_{r \in [0,1]} \max_{0 \leq i \leq 3} \{K^{(r)}_-(\varepsilon), K^{(r)}_+(\varepsilon)\} \).

Now, for a given \(r > 0 \), choose \(\varepsilon > 0 \) such that \(0 < \varepsilon < r \), and also define the following sets:

\[G := \{(m,n) \in \mathbb{N}^2 : D^*(L_{m,n}(f), f) \geq r\}, \]

\[G_0 := \{(m,n) \in \mathbb{N}^2 : \left\| \tilde{L}_{m,n}(f_0) - f_0 \right\| \geq \frac{r - \varepsilon}{4K(\varepsilon)}\}, \]

\[G_1 := \{(m,n) \in \mathbb{N}^2 : \left\| \tilde{L}_{m,n}(f_1) - f_1 \right\| \geq \frac{r - \varepsilon}{4K(\varepsilon)}\}, \]

\[G_2 := \{(m,n) \in \mathbb{N}^2 : \left\| \tilde{L}_{m,n}(f_2) - f_2 \right\| \geq \frac{r - \varepsilon}{4K(\varepsilon)}\}, \]

\[G_3 := \{(m,n) \in \mathbb{N}^2 : \left\| \tilde{L}_{m,n}(f_3) - f_3 \right\| \geq \frac{r - \varepsilon}{4K(\varepsilon)}\}. \]

Then inequality (3.3) gives

\[G \subset G_0 \cup G_1 \cup G_2 \cup G_3 \]

which guarantees that, for each \((j,k) \in \mathbb{N}^2\)

\[\sum_{(m,n) \in G} a_{j,k,m,n} \leq \sum_{i=0}^{3} \left(\sum_{(m,n) \in G_i} a_{j,k,m,n} \right). \]
Also, by the definition of \(\gamma_{m,n}(m,n)\in\mathbb{N}^2\), we have

\[
\frac{1}{\gamma_{j,k}(m,n)\in G} \sum_{a_{j,k,m,n}} \leq \sum_{i=0}^{3} \left(\frac{1}{\alpha_{i,j,k}(m,n)\in G} \sum_{a_{j,k,m,n}} \right).
\]

If we take as \(j,k\to\infty\) on both sides of inequality (3.4) and use the hypothesis (3.1), we immediately see that

\[
P - \lim_{j,k\to\infty} \frac{1}{\gamma_{j,k}(m,n)\in G} \sum_{a_{j,k,m,n}}
\]

which gives (3.2). So, the proof is completed.

We also give the next result.

Theorem 3.2. Let \(A = [a_{j,k,m,n}], \{\alpha_{i,m,n}\}_{(m,n)\in\mathbb{N}^2} (i = 0, 1, 2, 3), \{\gamma_{m,n}\}_{(m,n)\in\mathbb{N}^2}, \{L_{m,n}\}_{(m,n)\in\mathbb{N}^2}\) and \(\{\tilde{L}_{m,n}\}_{(m,n)\in\mathbb{N}^2}\) be the same as in Theorem 3.1 with the property (2.1). If, for each \(i = 0, 1, 2, 3\)

\[
\|\tilde{L}_{m,n}(f_i) - f_i\| = s\|L_{m,n}(A)\| - o_{m,n}(\alpha_{i,m,n}) \quad \text{as} \ m,n\to\infty
\]

then, for all \(f \in C(x(U))\), we have

\[
D^* (L_{m,n}(f), f) = s\|L_{m,n}(A)\| - o_{m,n}(\gamma_{m,n}) \quad \text{as} \ m,n\to\infty.
\]

Proof. By (3.3), it is clear that, for any \(\varepsilon > 0\),

\[
D^* (L_{m,n}(f), f) \\
\leq \varepsilon \gamma_{m,n} + B(\varepsilon) \left\{ \|\tilde{L}_{m,n}(f_0) - f_0\| + \|\tilde{L}_{m,n}(f_1) - f_1\| \\
+ \|\tilde{L}_{m,n}(f_2) - f_2\| + \|\tilde{L}_{m,n}(f_3) - f_3\| \right\}
\]

holds for some \(B(\varepsilon) > 0\). Now, as in the proof of Theorem 3.1 for a given \(\varepsilon' > 0\), choosing \(\varepsilon > 0\) such that \(\varepsilon < \varepsilon'\). Now we define the following sets:

\[
E : = \{(m,n)\in\mathbb{N}^2 : D^* (L_{m,n}(f), f) \geq \varepsilon' \gamma_{m,n}\} ,
\]

\[
E_0 : = \{(m,n)\in\mathbb{N}^2 : \|\tilde{L}_{m,n}(f_0) - f_0\| \geq \frac{\varepsilon' - \varepsilon}{4B(\varepsilon)} \alpha_{0,m,n}\} ,
\]

\[
E_1 : = \{(m,n)\in\mathbb{N}^2 : \|\tilde{L}_{m,n}(f_1) - f_1\| \geq \frac{\varepsilon' - \varepsilon}{4B(\varepsilon)} \alpha_{1,m,n}\} ,
\]

\[
E_2 : = \{(m,n)\in\mathbb{N}^2 : \|\tilde{L}_{m,n}(f_2) - f_2\| \geq \frac{\varepsilon' - \varepsilon}{4B(\varepsilon)} \alpha_{2,m,n}\} ,
\]

\[
E_3 : = \{(m,n)\in\mathbb{N}^2 : \|\tilde{L}_{m,n}(f_3) - f_3\| \geq \frac{\varepsilon' - \varepsilon}{4B(\varepsilon)} \alpha_{3,m,n}\}.
\]

In this case, we claim that

\[
E \subset E_0 \cup E_1 \cup E_2 \cup E_3.
\]
Indeed, otherwise, there would be an element \((m, n) \in E\) but \((m, n) \notin E_0 \cup E_1 \cup E_2 \cup E_3\). So, we get
\[
(m, n) \notin E_0 \Rightarrow \|L_m,n (f_0) - f_0\| < \frac{(\varepsilon' - \varepsilon)}{4B(\varepsilon)} \alpha_{0,m,n},
\]
\[
(m, n) \notin E_1 \Rightarrow \|L_m,n (f_1) - f_1\| < \frac{(\varepsilon' - \varepsilon)}{4B(\varepsilon)} \alpha_{1,m,n},
\]
\[
(m, n) \notin E_2 \Rightarrow \|L_m,n (f_2) - f_2\| < \frac{(\varepsilon' - \varepsilon)}{4B(\varepsilon)} \alpha_{2,m,n},
\]
\[
(m, n) \notin E_3 \Rightarrow \|L_m,n (f_3) - f_3\| < \frac{(\varepsilon' - \varepsilon)}{4B(\varepsilon)} \alpha_{3,m,n}.
\]

By the definition of \(\{\gamma_{m,n}\}_{(m,n) \in \mathbb{N}^2}\), we immediately see that
\[
B(\varepsilon) \sum_{k=0}^{3} \|L_m,n (f_k) - f_k\| < (\varepsilon' - \varepsilon) \gamma_{m,n}.
\]

Since \((m, n) \in E\), we have \(D^* (L_m,n (f), f) \geq \varepsilon \gamma_{m,n}\), and hence, by (3.7),
\[
B(\varepsilon) \sum_{k=0}^{3} \|L_m,n (f_k) - f_k\| \geq (\varepsilon' - \varepsilon) \gamma_{m,n},
\]
which contradicts with (3.9). So, our claim (3.8) holds true. Now, it follows from (3.8) that
\[
\sum_{(m,n) \in E} a_{j,k,m,n} \leq \sum_{i=0}^{3} \left(\sum_{(m,n) \in E_i} a_{j,k,m,n} \right).
\]

Letting \(j, k \to \infty\) in (3.10) and using (3.5), we observe that
\[
P - \lim_{j,k \to \infty} \sum_{(m,n) \in E} a_{j,k,m,n}
\]
which means (3.6). The proof is completed. \qed

Remark 3.1. If \(\alpha_{i,m,n} \equiv 1\) for each \(i = 0, 1, 2, 3\), then Theorem 3.2 reduced to Theorem 2.1. Also, if \(A = I\), the identity matrix, \(\alpha_{i,m,n} \equiv 1\) for each \(i = 0, 1, 2, 3\), then Theorem 3.2 reduced to Theorem 2.2.

References

Kamil Demirci, Sevda Karakuş

Sinop University, Faculty of Arts and Sciences, Department of Mathematics, 57000, Sinop, Turkey
E-Mail: kamild@sinop.edu.tr (Kamil Demirci), skarakus@sinop.edu.tr (Sevda Karakuş)