Saurabh Manro, Sanjay Kumar, S. S. Bhatia

WEAKLY COMPATIBLE MAPS OF TYPE (A)
IN G-METRIC SPACES

Abstract. In this paper, we introduce the concept of compatible maps and weakly compatible maps of type (A) in G-metric spaces.

1. Introduction

In 1922, Banach proved fixed-point theorem (“Let \((X, d)\) be a complete metric space. If \(T\) satisfies \(d(Tx, Ty) \leq kd(x, y)\) for each \(x, y \in X\) where \(0 < k < 1\), then \(T\) has a unique fixed point in \(X\).”), which ensures under appropriate conditions, the existence and uniqueness of a fixed-point. This theorem had many applications, but suffers from one drawback—the definition requires that \(T\) be continuous throughout \(X\). Then there followed a flood of papers involving contractive definition that do not require the continuity of \(T\). This result was further generalized and extended in various ways by many authors ([1], [4], [5]). This theorem provides a technique for solving a variety of applied problems in mathematical sciences and engineering.

In 1963, Gahler [3] introduced the concept of 2-metric spaces and claimed that a 2-metric is a generalization of the usual notion of a metric, but some authors proved that there is no relation between these two functions. It is clear that in 2-metric \(d(x, y, z)\) is to be taken as the area of the triangle with vertices at \(x, y\) and \(z\) in \(R^2\). However, Hsiao [2] showed that, for every contractive definition, with \(x_n = T^n x_0\), every orbit is linearly dependent, thus rendering fixed point theorems in such spaces trivial.

In 1992, Dhage [1] introduced the concept of \(D\)-metric space. The situation for a \(D\)-metric space is quite different from 2-metric spaces. Geometrically, a \(D\)-metric \(D(x, y, z)\) represent the perimeter of the triangle with vertices \(x, y\) and \(z\) in \(R^2\). Recently, Mustafa and Sims [6] showed that most of

\[\text{2000 Mathematics Subject Classification: 47H10, 54H25.}\]
\[\text{Key words and phrases: G-metric space, compatible maps of type (A), weakly compatible maps of type (A).}\]
the results concerning Dhage’s D-metric spaces are invalid. Therefore, they introduced an improved version of the generalized metric space structure, which they called G-metric space. For more details on G-metric spaces, one can referred to the papers [7]–[13].

Now we give preliminaries and basic definitions which are used throughout the paper.

In 2006, Mustafa and Sims [7] introduced the concept of G-metric spaces as follows:

Definition 1.1. [7] Let X be a nonempty set, and let $G : X \times X \times X \to R^+$ be a function satisfying the following axioms:

(G1) $G(x,y,z) = 0$ if $x = y = z$,
(G2) $0 < G(x,x,y)$, for all $x,y \in X$ with $x \neq y$,
(G3) $G(x,x,y) \leq G(x,y,z)$, for all $x,y,z \in X$ with $z \neq y$,
(G4) $G(x,y,z) = G(x,z,y) = G(y,z,x) = \cdots$ (symmetry in all three variables),
(G5) $G(x,y,z) \leq G(x,a,a) + G(a,y,z)$ for all $x,y,z,a \in X$, (rectangle inequality),

then the function G is called a generalized metric, or, more specifically a G-metric on X and the pair (X,G) is called a G-metric space.

Definition 1.2. [7] Let (X,G) be a G-metric space, and let $\{x_n\}$ be a sequence of points in X, a point $x \in X$ is said to be the limit of the sequence $\{x_n\}$ if $\lim_{m,n \to \infty} G(x,x_n,x_m) = 0$ and one says that sequence $\{x_n\}$ is G-convergent to x. Thus, that if $x_n \to x$ or $\lim_{n \to \infty} x_n \to x$ as $n \to \infty$ in a G-metric space (X,G) then for each $\epsilon > 0$, there exists a positive integer N such that $G(x,x_n,x_m) < \epsilon$ for all $m,n \geq N$.

Now we state some results from the papers ([7]–[9]) which are helpful for proving our main results.

Proposition 1.1. [7] Let (X,G) be a G-metric space. Then the following are equivalent:

1. $\{x_n\}$ is G-convergent to x,
2. $G(x_n,x_n,x) \to 0$ as $n \to \infty$,
3. $G(x_n,x,x) \to 0$ as $n \to \infty$,
4. $G(x_m,x_n,x) \to 0$ as $m,n \to \infty$.

Definition 1.3. [7] Let (X,G) be a G-metric space. A sequence $\{x_n\}$ is called G-Cauchy if, for each $\epsilon > 0$ there exists a positive integer N such that $G(x_n,x_m,x_l) < \epsilon$ for all $n,m,l \geq N$; i.e. if $G(x_n,x_m,x_l) \to 0$ as $n,m,l \to N$.

Proposition 1.2. [7] If \((X, G)\) is a \(G\)-metric space then the following are equivalent:

1. the sequence \(\{x_n\}\) is \(G\)-Cauchy,
2. for each \(\epsilon > 0\), there exists a positive integer \(N\) such that \(G(x_n, x_m, x_m) < \epsilon\) for all \(n, m \geq N\).

Proposition 1.3. [7] Let \((X, G)\) be a \(G\)-metric space. Then the function \(G(x, y, z)\) is jointly continuous in all three of its variables.

Definition 1.4. [7] A \(G\)-metric space \((X, G)\) is called a symmetric \(G\)-metric space if \(G(x, y, y) = G(y, x, x)\) for all \(x, y \in X\).

Proposition 1.4. [7] Every \(G\)-metric space \((X, G)\) will defines a metric space \((X, d_G)\) by

1. \(d_G(x, y) = G(x, y, y) + G(y, x, x)\) for all \(x, y \in X\).

If \((X, G)\) is a symmetric \(G\)-metric space, then

2. \(d_G(x, y) = 2G(x, y, y)\) for all \(x, y \in X\).

However, if \((X, G)\) is not symmetric, then it follows from the \(G\)-metric properties that

3. \(3/2G(x, y, y) \leq d_G(x, y) \leq 3G(x, y, y)\) for all \(x, y \in X\).

Definition 1.5. [7] A \(G\)-metric space \((X, G)\) is said to be \(G\)-complete if every \(G\)-Cauchy sequence in \((X, G)\) is \(G\)-convergent in \(X\).

Proposition 1.5. [7] A \(G\)-metric space \((X, G)\) is \(G\)-complete if and only if \((X, d_G)\) is a complete metric space.

Proposition 1.6. [7] Let \((X, G)\) be a \(G\)-metric space. Then, for any \(x, y, z, a \in X\) it follows that:

1. if \(G(x, y, z) = 0\), then \(x = y = z\),
2. \(G(x, y, z) \leq G(x, x, y) + G(x, x, z)\),
3. \(G(x, y, y) \leq 2G(y, x, x)\),
4. \(G(x, y, z) \leq G(x, a, z) + G(a, y, z)\),
5. \(G(x, y, z) \leq \frac{2}{3}(G(x, y, a) + G(x, a, z) + G(a, y, z))\),
6. \(G(x, y, z) \leq (G(x, a, a) + G(y, a, a) + G(z, a, a))\).

Definition 1.6. [7] Let \((X, G)\) and \((X^0, G^0)\) be \(G\)-metric spaces and \(f : (X, G) \rightarrow (X^0, G^0)\) be a function, then \(f\) is said to be \(G\)-continuous at a point \(a \in X\) if and only if, given \(\epsilon > 0\) there exists \(\delta > 0\) such that \(x, y \in X\) and \(G(a, x, y) < \delta\) implies \(G^0(f(a), f(x), f(y)) < \epsilon\). A function \(f\) is \(G\)-continuous at \(X\) if and only if it is \(G\)-continuous at all \(a \in X\).
2. Main results

In 1998, Jungck and Rhoades [5] introduced the concept of weakly compatibility as follows:

Definition 2.1. [5] Let \((X, G)\) be a \(G\)-metric space, \(f\) and \(g\) be self maps on \(X\). A point \(x \in X\) is called a coincidence point of \(f\) and \(g\) iff \(fx = gx\). In this case, \(w = fx = gx\) is called a point of coincidence of \(f\) and \(g\).

Definition 2.2. [5] Two self-mappings \(S\) and \(T\) are said to be weakly compatible if they commute at coincidence points.

We introduce following definitions:

Definition 2.3. Let \(S\) and \(T\) be maps from a \(G\)-metric space \((X, G)\) into itself. The maps \(S\) and \(T\) are said to be compatible map if

\[
\lim_{n \to \infty} G(STx_n, TSx_n, TSx_n) = 0 \quad \text{or} \quad \lim_{n \to \infty} G(TSx_n, STx_n, STx_n) = 0
\]

whenever \(\{x_n\}\) is sequence in \(X\) such that \(\lim_{n \to \infty} Sx_n = \lim_{n \to \infty} T x_n = t\) for some \(t \in X\).

Definition 2.4. Let \(S\) and \(T\) be maps from a \(G\)-metric space \((X, G)\) into itself. The maps \(S\) and \(T\) are said to be compatible map of type \((A)\) if

\[
\lim_{n \to \infty} G(TSx_n, SSx_n, SSx_n) = 0 \quad \text{and} \quad \lim_{n \to \infty} G(STx_n, TTx_n, TTx_n) = 0
\]

whenever \(\{x_n\}\) is sequence in \(X\) such that \(\lim_{n \to \infty} S\{x_n\} = \lim_{n \to \infty} T x_n = t\) for some \(t \in X\).

Definition 2.5. Let \(S\) and \(T\) be maps from a \(G\)-metric space \((X, G)\) into itself. The maps \(S\) and \(T\) are said to be weakly compatible of type \((A)\) if

\[
\lim_{n \to \infty} G(TSx_n, SSx_n, SSx_n) \leq \lim_{n \to \infty} G(STx_n, SSx_n, SSx_n)
\]

and

\[
\lim_{n \to \infty} G(STx_n, TTx_n, TTx_n) \leq \lim_{n \to \infty} G(TSx_n, TTx_n, TTx_n)
\]

whenever \(\{x_n\}\) is sequence in \(X\) such that \(\lim_{n \to \infty} Sx_n = \lim_{n \to \infty} T x_n = t\) for some \(t \in X\).

The following propositions show that Definitions 2.3 and 2.4 are equivalent under some conditions:

Proposition 2.1. Let \((X, G)\) be a \(G\)-metric space and let \(S, T : X \to X\) be \(G\)-continuous mappings. If \(S\) and \(T\) are compatible then they are compatible of type \((A)\).
Proof. Suppose S and T are compatible. Let $\{x_n\}$ be a sequence in X such that $\lim_{n \to \infty} Sx_n = \lim_{n \to \infty} Tx_n = t$ for some $t \in X$. By (G5),
\[
G(TSx_n, SSx_n, SSx_n) \leq G(TSx_n, STx_n, STx_n) + G(STx_n, SSx_n, SSx_n).
\]

Since S and T are compatible and S is G-continuous, we have
\[
\lim_{n \to \infty} G(TSx_n, SSx_n, SSx_n) = 0.
\]
Similarly, if T is G-continuous, we have
\[
\lim_{n \to \infty} G(STx_n, TTx_n, TTx_n) = 0.
\]
Therefore, S and T are compatible of type (A).

Proposition 2.2. Let (X, G) be a G-metric space and let $S, T : X \to X$ be compatible mappings of type (A). If both S and T are G-continuous, then S and T are compatible.

Proof. To show that S and T are compatible, suppose that $\{x_n\}$ is a sequence in X such that $\lim_{n \to \infty} Sx_n = \lim_{n \to \infty} Tx_n = t$ for some $t \in X$ then, as T is G-continuous,
\[
\lim_{n \to \infty} TSx_n = \lim_{n \to \infty} TTx_n = Tt.
\]

By (G5),
\[
G(STx_n, TSx_n, TSx_n) \leq G(STx_n, TTx_n, TTx_n) + G(TTx_n, TSx_n, TSx_n).
\]

Since S and T are compatible mappings of type (A) and T is G-continuous, we have $\lim_{n \to \infty} G(STx_n, TSx_n, TSx_n) = 0$. Similarly, if S is G-continuous, we have $\lim_{n \to \infty} G(TSx_n, STx_n, STx_n) = 0$. Therefore, S and T are compatible.

From Propositions 2.1 and 2.2, we have:

Proposition 2.3. Let S and T be G-continuous mappings from a G-metric space (X, G) into itself. Then S and T are compatible iff they are compatible of type (A).

The following propositions show that Definitions 2.4 and 2.5 are equivalent under some conditions:

Proposition 2.4. Every pair of compatible mappings of type (A) is weakly compatible of type (A).

Proof. Suppose that pair $\{S, T\}$ of maps is compatible of type (A), then we have
\[
0 = \lim_{n \to \infty} G(TSx_n, SSx_n, SSx_n) \leq \lim_{n \to \infty} G(STx_n, SSx_n, SSx_n).
\]
and
\[0 = \lim_{n \to \infty} G(STx_n, TTx_n, TTx_n) \leq \lim_{n \to \infty} G(TSx_n, TTx_n, TTx_n), \]
whenever \(\{x_n\} \) is sequence in \(X \) such that \(\lim_{n \to \infty} Sx_n = \lim_{n \to \infty} Tx_n = t \) for some \(t \in X \), which is always true. Therefore, \(S \) and \(T \) are weakly compatible of type \((A)\). ■

Proposition 2.5. Let \(S \) and \(T \) be \(G \)-continuous mappings of a \(G \)-metric space \((X,G)\) into itself. If \(S \) and \(T \) are weakly compatible of type \((A)\), then they are compatible of type \((A)\).

Proof. Let \(\{x_n\} \) be a sequence in \(X \) such that \(\lim_{n \to \infty} Sx_n = \lim_{n \to \infty} Tx_n = t \) for some \(t \in X \). As \(S \) and \(T \) are \(G \)-continuous maps, therefore,

\[\lim_{n \to \infty} SSx_n = \lim_{n \to \infty} STx_n = St \quad \text{and} \quad \lim_{n \to \infty} TSx_n = \lim_{n \to \infty} TTx_n = Tt. \]

As \(S \) and \(T \) are weakly compatible of type \((A)\), by definition
\[
\lim_{n \to \infty} G(TSx_n, SSx_n, SSx_n) \leq \lim_{n \to \infty} G(STx_n, SSx_n, SSx_n) = G(St, St, St) = 0.
\]

and
\[
\lim_{n \to \infty} G(STx_n, TTx_n, TTx_n) \leq \lim_{n \to \infty} G(TSx_n, TTx_n, TTx_n) = G(Tt, Tt, Tt) = 0.
\]

This implies,
\[\lim_{n \to \infty} G(TSx_n, SSx_n, SSx_n) = 0 \quad \text{and} \quad \lim_{n \to \infty} G(STx_n, TTx_n, TTx_n) = 0, \]
whenever \(\{x_n\} \) is sequence in \(X \) such that \(\lim_{n \to \infty} Sx_n = \lim_{n \to \infty} Tx_n = t \) for some \(t \in X \). Hence, \(S \) and \(T \) are compatible of type \((A)\). ■

As a direct consequence of above Proposition, we have the following:

Proposition 2.6. Let \(S \) and \(T \) be \(G \)-continuous mappings from a \(G \)-metric space \((X,G)\) into itself. Then
(1) \(S \) and \(T \) are compatible of type \((A)\) iff they are weakly compatible of type \((A)\)
(2) \(S \) and \(T \) are compatible iff they are weakly compatible of type \((A)\).

Properties of weak compatible mappings of type \((A)\) in \(G \)-metric spaces:

Proposition 2.7. Let \(S \) and \(T \) be weakly compatible mappings of type \((A)\) from a \(G \)-metric space \((X,G)\) into itself. If \(Su = Tu \) for some \(u \in X \), then \(STu = SSu = TTu = TSu \).
Proof. Suppose that \(\{x_n\} \) be a sequence in \(X \) defined by \(\{x_n\} = u, n = 1, 2, 3, \) and \(Su = Tu. \) Then we have \(\lim_{n \to \infty} Sx_n = \lim_{n \to \infty} Tx_n = Su = Tu. \) Since, \(S \) and \(T \) are weakly compatible mappings of type (A), we have
\[
G(STu, TTu, TTu) = \lim_{n \to \infty} G(STx_n, TTx_n, TTx_n) \\
\leq \lim_{n \to \infty} G(TSx_n, TTx_n, TTx_n) = G(TSu, TTu, TTu) \\
= G(TTu, TTu, TTu) = 0.
\]
Hence, we have \(STu = TTu. \) Therefore, \(STu = SSu = TTu = TSu. \)

Proposition 2.8. Let \(S \) and \(T \) be weakly compatible mappings of type (A) from a \(G \)-metric space \((X, G) \) into itself. Suppose \(\lim_{n \to \infty} Sx_n = \lim_{n \to \infty} Tx_n = u \) for some \(u \in X. \) Then we have the following:

1. \(\lim_{n \to \infty} TSx_n = Su \) if \(S \) is \(G \)-continuous at \(u \in X, \)
2. \(\lim_{n \to \infty} STx_n = Tu \) if \(T \) is \(G \)-continuous at \(u \in X, \)
3. \(STu = TSu \) and \(Su = Tu \) if \(S \) and \(T \) are \(G \)-continuous at \(u \in X. \)

Proof. (1) Suppose \(\lim_{n \to \infty} Sx_n = \lim_{n \to \infty} Tx_n = u \) for some \(u \in X. \) Since, \(S \) is \(G \)-continuous, we have \(\lim_{n \to \infty} SSx_n = \lim_{n \to \infty} STx_n = Su. \) By (G5),
\[
G(TSx_n, Su, Su) \leq G(TSx_n, SSx_n, SSx_n) + G(SSx_n, Su, Su).
\]
As \(S \) and \(T \) are weakly compatible mappings of type (A), as \(n \to \infty \)
\[
\lim_{n \to \infty} G(TSx_n, Su, Su) \leq \lim_{n \to \infty} G(STx_n, SSx_n, SSx_n) \\
+ \lim_{n \to \infty} G(SSx_n, Su, Su) \\
= G(Su, Su, Su) + G(Su, Su, Su) = 0 + 0 = 0.
\]
This implies \(\lim_{n \to \infty} TSx_n = Su. \)

(2) The proof is similar to proof (1).

(3) Since \(T \) is \(G \)-continuous at \(u, \) we have \(\lim_{n \to \infty} Sx_n = \lim_{n \to \infty} Tx_n = u, \) this implies \(\lim_{n \to \infty} TSx_n = \lim_{n \to \infty} TTx_n = Tu. \) By (1), since \(S \) is \(G \)-continuous at \(u, \) we also have \(\lim_{n \to \infty} TSx_n = Su. \) Hence, by uniqueness of the limit, we have \(Su = Tu \) and so by Proposition 2.7, \(STu = TSu. \)

References

S. Manro, S. S. Bhatia:

SCHOOL OF MATHEMATICS AND COMPUTER APPLICATIONS
THAPAR UNIVERSITY
PATIALA-147 004, INDIA
E-mail: sauravmanro@yahoo.com
ssbhatia@thapar.edu

S. Kumar:

DEENBANDHU CHHOTU RAM UNIVERSITY OF SCIENCE AND TECHNOLOGY
MURTHAL (SONEPAT), INDIA
E-mail: sanjaymudgal2004@yahoo.com

Received August 5, 2010; revised version December 27, 2010.