Grzegorz Dymek, Andrzej Walendziak

FUZZY IDEALS OF PSEUDO-BCK ALGEBRAS

Abstract. Characterizations of fuzzy ideals of a pseudo-BCK algebra are established. Conditions for a fuzzy set to be a fuzzy ideal are given. Given a fuzzy set μ, the least fuzzy ideal containing μ is constructed. The homomorphic properties of fuzzy ideals of a pseudo-BCK algebra are provided. Finally, characterizations of Noetherian pseudo-BCK algebras and Artinian pseudo-BCK algebras in terms of fuzzy ideals are given.

1. Introduction

Fuzzy ideals of BCK algebras were introduced in [16] and later were studied in [14]. See also [11] and [17]. In this paper, we consider the fuzzy ideal theory in pseudo-BCK algebras. In Section 3 we give characterizations of fuzzy ideals of a pseudo-BCK algebra. We provide conditions for a fuzzy set to be a fuzzy ideal. Given a fuzzy set μ, we make the least fuzzy ideal containing μ. This leads us to show that the set of fuzzy ideals of a pseudo-BCK algebra is a complete lattice. The homomorphic properties of fuzzy ideals of pseudo-BCK algebras.

2000 Mathematics Subject Classification: 03G25; 06F35.

Key words and phrases: pseudo-BCK algebra, fuzzy ideal, Noetherian (Artinian) pseudo-BCK algebra.
a pseudo-BCK algebra are provided. Finally, characterizations of Noetherian pseudo-BCK algebras and Artinian pseudo-BCK algebras in terms of fuzzy ideals are given in Section 4. For the convenience of the reader, in Section 2 we give the necessary material needed in the sequel, thus making our exposition self-contained.

2. Preliminaries

The notion of pseudo-BCK algebras is defined by Georgescu and Iorgulescu in [4] as follows:

Definition 2.1. A pseudo-BCK algebra is a structure \(A = (A; \leq, *, \circ, 0) \), where “\(\leq \)” is a binary relation on a set \(A \), “\(* \)” and “\(\circ \)” are binary operations on \(A \) and “\(0 \)” is an element of \(A \), verifying the axioms: for all \(x, y, z \in A \),

\[
\text{(pBCK-1)} \quad (x * y) \circ (x * z) \leq z * y, \quad (x \circ y) * (x \circ z) \leq z \circ y,
\]

\[
\text{(pBCK-2)} \quad x * (x \circ y) \leq y, \quad x \circ (x * y) \leq y,
\]

\[
\text{(pBCK-3)} \quad x \leq x,
\]

\[
\text{(pBCK-4)} \quad 0 \leq x,
\]

\[
\text{(pBCK-5)} \quad (x \leq y \text{ and } y \leq x) \implies x = y,
\]

\[
\text{(pBCK-6)} \quad x \leq y \iff x * y = 0 \iff x \circ y = 0.
\]

Note that every pseudo-BCK algebra satisfying \(x * y = x \circ y \) for all \(x, y \in A \) is a BCK algebra.

The relation “\(\leq \)” is a partial order on \(A \) (see [4]), that is, \((A; \leq)\) is a poset. If \((A; \leq)\) is a chain, then \(A \) is called a pseudo-BCK chain.

Example 2.2. [7] Let \(A = \{0, a, b, 1\} \), where \(0 < a < b < 1 \). We define binary operations “\(* \)” and “\(\circ \)” on \(A \) by the following tables:

\[
\begin{array}{cccc}
* & 0 & a & b & 1 \\
0 & 0 & 0 & 0 & 0 \\
a & a & 0 & 0 & 0 \\
b & b & b & 0 & 0 \\
1 & 1 & b & b & 0 \\
\end{array}
\quad \quad
\begin{array}{cccc}
\circ & 0 & a & b & 1 \\
0 & 0 & 0 & 0 & 0 \\
a & a & 0 & 0 & 0 \\
b & b & b & 0 & 0 \\
1 & 1 & 1 & 1 & a \\
\end{array}
\]

Then \(A = (A; \leq, *, \circ, 0) \) is a pseudo-BCK chain.

Example 2.3. [13] Let \(B = [0, \infty) \) and let \(\leq \) be the usual order on \(B \). Define binary operations “\(* \)” and “\(\circ \)” on \(B \) by
Fuzzy ideals of pseudo-BCK algebras

$x \ast y = \begin{cases} 0 & \text{if } x \leq y, \\ \frac{2x}{\pi} \arctan(\ln(\frac{x}{y})) & \text{if } 0 < y < x, \\ x & \text{if } y = 0, \end{cases}$

$x \circ y = \begin{cases} 0 & \text{if } x \leq y, \\ xe^{-\tan(\frac{\pi y}{2})} & \text{if } y < x, \end{cases}$

for all $x, y \in B$. Then $B = (B; \leq, \ast, \circ, 0)$ is a pseudo-BCK chain.

Lemma 2.4. [4] Let A be a pseudo-BCK algebra. Then for all $x, y, z \in A$:

(a) $(x \ast y) \circ z = (x \circ z) \ast y$,
(b) if $x \leq y$, then $x \ast z \leq y \ast z$ and $x \circ z \leq y \circ z$.

Applying (pBCK-6) and Lemma 2.4(a) it is easy to see that in a pseudo-BCK algebra the following property holds:

(1) $(\cdots (x \ast a_1) \ast \cdots) \ast a_n = 0 \iff (\cdots (x \circ a_n) \circ \cdots) \circ a_1 = 0$,

where n is a natural number.

A subset I of A is called an ideal of a pseudo-BCK algebra A if it satisfies

(I1) $0 \in I$,
(I2) if $x \ast y \in I$ and $y \in I$, then $x \in I$.

We will denote by $\text{Id}(A)$ the set of all ideals of A. Obviously, $\{0\}, A \in \text{Id}(A)$. An ideal I of A is called proper if $I \neq A$.

Example 2.5. Let A be the pseudo-BCK algebra from Example 2.2. Then it is easy to see that $\{0\}, \{0, a\}$ and A are the only ideals of A.

Proposition 2.6. [7] Let I be an ideal of a pseudo-BCK algebra A. Then for any $x, y \in A$, if $y \in I$ and $x \leq y$, then $x \in I$.

Proposition 2.7. [7] Let A be a pseudo-BCK algebra and let $I \subseteq A$. Then I is an ideal of A if and only if it satisfies conditions (I1) and (I2') for all $x, y \in A$, if $x \circ y \in I$ and $y \in I$, then $x \in I$.

Remark 2.8. It is easy to prove that the intersection of an arbitrary number of ideals of a pseudo-BCK algebra A is an ideal of A. It is also not hard to show that the union of an ascending sequence of ideals of A is an ideal of A.

For every subset $X \subseteq A$, we denote by $(X]$ the ideal of A generated by X, that is, $(X]$ is the smallest ideal containing X. By Lemma 2.2 of [7], $(\emptyset) = \{0\}$ and for every $\emptyset \neq X \subseteq A$,
(X) = \{x \in A : (\cdots (x \ast a_1) \cdots) \ast a_n = 0 \text{ for some } a_1, \ldots, a_n \in X\}
= \{x \in A : (\cdots (x \circ a_1) \circ \cdots) \circ a_n = 0 \text{ for some } a_1, \ldots, a_n \in X\}.

The set \(\text{Id}(A)\) is ordered by set-inclusion. For \(I, J \in \text{Id}(A)\) we have \(I \land J = I \cap J\) and \(I \lor J = (I \cup J)\).

Theorem 2.9. Let \(A\) be a pseudo-BCK algebra. Then \((\text{Id}(A); \land, \lor)\) is a complete lattice.

Lemma 2.10. Let \(A\) be a pseudo-BCK algebra. Let \(n\) and \(m\) be natural numbers. If

\[(x \ast a) \ast b = 0,\]
\[\cdots (a \ast a_1) \ast \cdots \ast a_n = 0,\]
\[\cdots (b \ast b_1) \ast \cdots \ast b_m = 0\]

in \(A\), then
\[\cdots (((\cdots (x \ast a_1) \ast \cdots) \ast b_1) \ast \cdots) \ast b_m = 0.\]

Proof. Since \((x \ast a) \ast b = 0\), we obtain by (pBCK-6) that \((x \ast a) \circ b = 0\).

Then, from Lemma 2.4(a) we have \((x \circ b) \ast a = 0\), that is, \(x \circ b \leq a\). Hence, by Lemma 2.4(b), \((x \circ b) \ast a_1 \leq a \ast a_1\). Next, again by Lemma 2.4(b), we have \(((x \circ b) \ast a_1) \ast a_2 \leq (a \ast a_1) \ast a_2\). Repeating the process we get
\[\cdots (((\cdots (x \circ b) \ast a_1) \ast \cdots) \ast a_n \leq (\cdots (a \ast a_1) \ast \cdots) \ast a_n = 0.\]

Applying (pBCK-4) and (pBCK-5) we obtain \(\cdots (((\cdots (x \circ b) \ast a_1) \cdots) \ast a_n = 0\).

From Lemma 2.4(a) we deduce that \(((\cdots (x \ast a_1) \ast \cdots) \ast a_n) \circ b = 0\), that is, \((\cdots (x \ast a_1) \ast \cdots) \ast a_n \leq b\). Hence, by Lemma 2.4(b),
\[\cdots (((\cdots (x \ast a_1) \ast \cdots) \ast a_n) \ast b_1) \ast \cdots) \ast b_m \leq (\cdots (b \ast b_1) \ast \cdots) \ast b_m = 0.\]

Therefore \(\cdots (((\cdots (x \ast a_1) \ast \cdots) \ast a_n) \ast b_1) \ast \cdots) \ast b_m = 0.\]

3. General fuzzy concepts. Fuzzy ideals

We now review some fuzzy concepts. First, for \(\Gamma \subseteq [0, 1]\) we define \(\land \Gamma = \inf \Gamma\) and \(\lor \Gamma = \sup \Gamma\). Obviously, if \(\Gamma = \{\alpha, \beta\}\), then \(\alpha \land \beta = \min \{\alpha, \beta\}\) and \(\alpha \lor \beta = \max \{\alpha, \beta\}\). The algebra \(([0, 1]; \land, \lor)\) is a complete lattice. Recall that a fuzzy set of \(A\) is a function \(\mu : A \to [0, 1]\).

For any fuzzy sets \(\mu\) and \(\nu\) of \(A\), we define
\[
\mu \leq \nu \text{ iff } \mu(x) \leq \nu(x) \text{ for all } x \in A.
\]

It is easy to check that this relation is an order relation in the set of fuzzy sets of \(A\).

Definition 3.1. Let \(A\) and \(B\) be any two sets, \(\mu\) be any fuzzy set of \(A\) and \(f : A \to B\) be any function. Set \(f^{-1}(y) = \{x \in A : f(x) = y\}\) for \(y \in B\).
The fuzzy set ν of B defined by

$$\nu(y) = \begin{cases} \bigvee\{\mu(x) : x \in f^{-1}(y)\} & \text{if } f^{-1}(y) \neq \emptyset, \\ 0 & \text{otherwise} \end{cases}$$

for all $y \in B$, is called the image of μ under f and is denoted by $f(\mu)$.

Definition 3.2. Let A and B be any two sets, $f : A \to B$ be any function and ν be any fuzzy set of $f(A)$. The fuzzy set μ of A defined by

$$\mu(x) = \nu(f(x))$$

for all $x \in A$ is called the preimage of ν under f and is denoted by $f^{-1}(\nu)$.

We say that μ is a fuzzy set of a pseudo-BCK algebra A if μ is a fuzzy set of A.

Definition 3.3. A fuzzy set μ of a pseudo-BCK algebra A is called a fuzzy ideal of A if it satisfies for all $x, y \in A$:

(d1) $\mu(0) \geq \mu(x)$,
(d2) $\mu(x) \geq \mu(x * y) \wedge \mu(y)$.

Proposition 3.4. Let μ be a fuzzy ideal of a pseudo-BCK algebra A. Then, for any $x, y \in A$, if $x \leq y$, then $\mu(x) \geq \mu(y)$.

Proof. If $x \leq y$, then $x * y = 0$. Hence, by (d2), we have $\mu(x) \geq \mu(x * y) \wedge \mu(y) = \mu(0) \wedge \mu(y) = \mu(y)$.

Denote by $\mathcal{FI}(A)$ the set of fuzzy ideals of a pseudo-BCK algebra A.

Example 3.5. Let A be the pseudo-BCK algebra from Example 2.2. Let $0 \leq \alpha_3 < \alpha_2 < \alpha_1 \leq 1$. Define a fuzzy set μ of A by

$$\mu(x) = \begin{cases} \alpha_1 & \text{if } x = 0, \\ \alpha_2 & \text{if } x = a, \\ \alpha_3 & \text{if } x \in \{b, 1\}. \end{cases}$$

It is easily checked that μ satisfies (d1) and (d2). Thus $\mu \in \mathcal{FI}(A)$.

Example 3.6. Let I be an ideal of a pseudo-BCK algebra A and let $\alpha, \beta \in [0, 1]$, with $\alpha > \beta$. Define $\mu_I^{\alpha,\beta}$ as follows:

$$\mu_I^{\alpha,\beta}(x) := \begin{cases} \alpha & \text{if } x \in I, \\ \beta & \text{otherwise}. \end{cases}$$

We denote $\mu_I^{\alpha,\beta} = \mu$. Since $0 \in I$, $\mu(0) = \alpha \geq \mu(x)$ for all $x \in A$. To prove (d2), let $x, y \in A$. If $x \in I$, then $\mu(x) = \alpha \geq \mu(x * y) \wedge \mu(y)$. Suppose now that $x \notin I$. By the definition of ideal, $x * y \notin I$ or $y \notin I$. Therefore, $\mu(x * y) \wedge \mu(y) = \beta = \mu(x)$. Thus μ is a fuzzy ideal of A.

In particular the characteristic function χ_{I} of I:

$$\chi_{I}(x) = \begin{cases}
1 & \text{if } x \in I, \\
0 & \text{otherwise}
\end{cases}$$

is a fuzzy ideal of A.

Proposition 3.7. A fuzzy set μ of a pseudo-BCK algebra A is a fuzzy ideal of A if and only if it satisfies (d1) and

$$(d2') \; \mu(x) \geq \mu(x \circ y) \land \mu(y) \text{ for all } x, y \in A.$$

Proof. It suffices to prove that if (d2) is satisfied, then (d2') is also satisfied. The proof of the converse of this implication is analogous. From (pBCK-2) we know that $x \mathbin{\ast} (x \circ y) \leq y$. Thus, by Proposition 3.4, $\mu(y) \leq \mu((x \mathbin{\ast} (x \circ y)))$. Hence

$$\mu(x \circ y) \land \mu(y) \leq \mu(x \circ y) \land \mu(x \circ (x \circ y)).$$

By (d2),

$$\mu(x \circ y) \land \mu(x \circ (x \circ y)) \leq \mu(x).$$

By (2) and (3) we obtain $\mu(x \circ y) \land \mu(y) \leq \mu(x)$, that is, (d2') holds.

Proposition 3.8. A fuzzy set μ of a pseudo-BCK algebra A is a fuzzy ideal of A if and only if it satisfies (d1) and

$$(d3) \; \text{for all } x, y, z \in A, \text{ if } (x \mathbin{\ast} y) \mathbin{\ast} z = 0, \text{ then } \mu(x) \geq \mu(y) \land \mu(z).$$

Proof. Let $\mu \in \mathcal{FI}(A)$ and let $x, y, z \in A$. Suppose that $(x \mathbin{\ast} y) \mathbin{\ast} z = 0$. Since μ is a fuzzy ideal, we have $\mu(x \mathbin{\ast} y) \geq \mu((x \mathbin{\ast} y) \mathbin{\ast} z) \land \mu(z) = \mu(0) \land \mu(z) = \mu(z)$ and $\mu(x) \geq \mu(x \mathbin{\ast} y) \land \mu(y)$. Therefore, $\mu(x) \geq \mu(y) \land \mu(z)$.

Conversely, let μ satisfy (d3). Applying (pBCK-3) we have $(x \mathbin{\ast} y) \mathbin{\ast} z = 0$, where $z = x \mathbin{\ast} y$. By (d3), $\mu(x) \geq \mu(y) \land \mu(z) = \mu(y) \land \mu(x \mathbin{\ast} y)$. Then μ satisfies (d2) and hence $\mu \in \mathcal{FI}(A)$.

It is easy to prove by induction the following.

Proposition 3.9. Let μ be a fuzzy set satisfying (d1) of a pseudo-BCK algebra A. Then μ is a fuzzy ideal if and only if for any $a_1, \ldots, a_n \in A$ ($n \geq 2$),

$$(\cdots (x \mathbin{\ast} a_1) \mathbin{\ast} \cdots) \mathbin{\ast} a_n = 0 \text{ implies } \mu(x) \geq \mu(a_1) \land \ldots \land \mu(a_n).$$

Theorem 3.10. Let μ be a fuzzy set of a pseudo-BCK algebra A. Then $\mu \in \mathcal{FI}(A)$ if and only if its nonempty level subset

$$U(\mu; \alpha) := \{x \in A : \mu(x) \geq \alpha\}$$

is an ideal of A for all $\alpha \in [0, 1]$.
Proof. Assume that \(\mu \in FI(\mathcal{A}) \) and let \(\alpha \in [0, 1] \) be such that \(U(\mu; \alpha) \neq \emptyset \). Then \(\mu(x_0) \geq \alpha \) for some \(x_0 \in \mathcal{A} \). Since \(\mu(0) \geq \mu(x_0) \), we have \(0 \in U(\mu; \alpha) \).

Let \(x, y \in \mathcal{A} \) be such that \(x \ast y, y \in U(\mu; \alpha) \). Then \(\mu(x \ast y) \geq \alpha \) and \(\mu(y) \geq \alpha \).

It follows from (d2) that
\[
\mu(x) \geq \mu(x \ast y) \land \mu(y) \geq \alpha
\]
so that \(x \in U(\mu; \alpha) \). Therefore \(U(\mu; \alpha) \) is an ideal of \(\mathcal{A} \).

Conversely, suppose that for each \(\alpha \in [0, 1] \), \(U(\mu; \alpha) = \emptyset \) or \(U(\mu; \alpha) \) is an ideal of \(\mathcal{A} \). If (d1) is not valid, then there exists \(x_0 \in \mathcal{A} \) such that \(\mu(0) < \mu(x_0) := \beta \). Then \(U(\mu; \beta) \neq \emptyset \) and by assumption, \(U(\mu; \beta) \) is an ideal of \(\mathcal{A} \). Hence \(0 \in U(\mu; \beta) \) and consequently, \(\mu(0) \geq \beta \). This is a contradiction and (d1) is valid. Now assume that (d2) does not hold. Then there are \(a, b \in \mathcal{A} \) such that \(\mu(a) < \mu(a \ast b) \land \mu(b) \). Taking
\[
\beta = \frac{1}{2}(\mu(a) + \mu(a \ast b) \land \mu(b)),
\]
we get \(\mu(a) < \beta < \mu(a \ast b) \land \mu(b) \leq \mu(a \ast b) \) and \(\beta < \mu(b) \). Therefore \(a \ast b, b \in U(\mu; \beta) \) but \(a \notin U(\mu; \beta) \). This is impossible, and \(\mu \) is a fuzzy ideal of \(\mathcal{A} \). \(\blacksquare \)

Example 3.11. Let \(\mu \) be as in Example 3.5. One can easily check that for all \(\alpha \in [0, 1] \) we have:
\[
U(\mu; \alpha) = \begin{cases}
\emptyset & \text{if } \alpha > \alpha_1, \\
\{0\} & \text{if } \alpha_2 < \alpha \leq \alpha_1, \\
\{0, a\} & \text{if } \alpha_3 < \alpha \leq \alpha_2, \\
A & \text{if } \alpha \leq \alpha_3.
\end{cases}
\]

Since \(\{0\}, \{0, a\} \) and \(A \) are all ideals of \(\mathcal{A} \), this is an another proof (by Theorem 3.10) that \(\mu \) is a fuzzy ideal of \(\mathcal{A} \).

Corollary 3.12. If \(\mu \) is a fuzzy ideal of a pseudo-BCK algebra \(\mathcal{A} \), then the set
\[
A_b := \{x \in \mathcal{A} : \mu(x) \geq \mu(b)\}
\]
is an ideal of \(\mathcal{A} \) for every \(b \in \mathcal{A} \).

By Corollary 3.12, we have the following.

Corollary 3.13. If \(\mu \) is a fuzzy ideal of a pseudo-BCK algebra \(\mathcal{A} \), then the set
\[
A_\mu := \{x \in \mathcal{A} : \mu(x) = \mu(0)\}
\]
is an ideal of \(\mathcal{A} \).

The following example shows that the converse of Corollary 3.13 does not hold.
Example 3.14. Let A be a pseudo-BCK algebra. Define a fuzzy set μ of A by

$$
\mu(x) = \begin{cases}
0.4 & \text{if } x = 0, \\
0.6 & \text{if } x \neq 0.
\end{cases}
$$

Then $A_\mu = \{0\}$ and it is an ideal of A but $\mu \notin \mathcal{FI}(A)$, because μ does not satisfy (d1).

Lemma 3.15. Let $I_1 \subseteq I_2 \subseteq \cdots \subseteq I_n \subseteq \cdots$ be a strictly ascending sequence of ideals of a pseudo-BCK algebra A and (t_n) be a strictly decreasing sequence in $(0,1)$. Let μ be the fuzzy set of A defined by

$$
\mu(x) = \begin{cases}
0 & \text{if } x \notin I_n \text{ for each } n \in \mathbb{N}, \\
t_n & \text{if } x \in I_n - I_{n-1} \text{ for } n = 1, 2, \ldots,
\end{cases}
$$

where $I_0 = \emptyset$. Then μ is a fuzzy ideal of A.

Proof. Let $I = \bigcup_{n \in \mathbb{N}} I_n$. By Remark 2.8, I is an ideal of A. Obviously, $\mu(0) = t_1 \geq \mu(x)$ for all $x \in A$, that is, (d1) holds. Now we show that μ satisfies (d2). Let $x, y \in A$. We have two cases.

Case 1: $x \notin I$.

Then $x \ast y \notin I$ or $y \notin I$. Therefore $\mu(x \ast y) \wedge \mu(y) = 0 = \mu(x)$.

Case 2: $x \in I_n - I_{n-1}$ for some $n = 1, 2, \ldots$.

Then $x \ast y \notin I_{n-1}$ or $y \notin I_{n-1}$. Hence $\mu(x \ast y) \leq t_n$ or $\mu(y) \leq t_n$. Therefore $\mu(x \ast y) \wedge \mu(y) \leq t_n = \mu(x)$.

Thus (d2) is also satisfied and consequently, μ is a fuzzy ideal of A. ■

Let $\mu_t \in \mathcal{FI}(A)$ for $t \in T$. The meet $\bigwedge_{t \in T} \mu_t$ is defined as follows:

$$
\left(\bigwedge_{t \in T} \mu_t \right)(x) = \bigwedge \{ \mu_t(x) : t \in T \}.
$$

Theorem 3.16. Let $\mu_t \in \mathcal{FI}(A)$ for $t \in T$. Then $\bigwedge_{t \in T} \mu_t \in \mathcal{FI}(A)$.

Proof. Let $\mu = \bigwedge_{t \in T} \mu_t$. Then, by (d1),

$$
\mu(0) = \bigwedge \{ \mu_t(0) : t \in T \} \geq \bigwedge \{ \mu_t(x) : t \in T \} = \mu(x)
$$

for all $x \in A$. Let $x, y \in A$. Since $\mu_t \in \mathcal{FI}(A)$, we have $\mu_t(x) \geq \mu_t(x \ast y) \wedge \mu_t(y)$. Hence

$$
\bigwedge \{ \mu_t(x) : t \in T \} \geq \bigwedge \{ \mu_t(x \ast y) \wedge \mu_t(y) : t \in T \}
$$

$$
= \bigwedge \{ \mu_t(x \ast y) : t \in T \} \wedge \bigwedge \{ \mu_t(y) : t \in T \}.
$$

Consequently, $\mu(x) \geq \mu(x \ast y) \wedge \mu(y)$ and therefore $\mu \in \mathcal{FI}(A)$. ■

Remark 3.17. Since $U(\bigwedge_{t \in T} \mu_t; \alpha) = \bigcap_{t \in T} U(\mu_t : \alpha)$, we see that Theorem 3.16 follows from Remark 2.8 and Theorem 3.10.
Let f be a fuzzy set of A. A fuzzy ideal μ of A is said to be generated by f if $f \leq \mu$ and for any fuzzy ideal ν of A, $f \leq \nu$ implies $\mu \leq \nu$. The fuzzy ideal generated by f will be denoted by $[f]$. The fuzzy ideal $[f]$ can be defined equivalently as follows:

$$(f) = \bigwedge\{\nu \in F\mathcal{I}(A) : \nu \geq f\}.$$

We have a simple theorem.

Theorem 3.18. Let f and g be fuzzy sets of A. The following properties hold:

(a) $f \leq g$ implies $[f] \leq [g]$,

(b) if $f \in F\mathcal{I}(A)$, then $[f] = f$.

Theorem 3.19. Let f be a fuzzy set of a pseudo-BCK algebra A and let μ be a fuzzy set of A defined for all $x \in A$ by

$$\mu(x) = \bigvee \{f(a_1) \land \cdots \land f(a_n) : (\cdots (x \ast a_1) \ast \cdots) \ast a_n = 0$$

and $a_1, \ldots, a_n \in A\}.$

Then $\mu = [f]$.

Proof. It is easy to see that $\mu(0) \geq \mu(x)$ for all $x \in A$. Now we prove that μ satisfies (d3). Suppose that $(x \ast a) \ast b = 0$, where $x, a, b \in A$. Let $k \in \mathbb{N}$. By the definition of μ, we can select $a_1, \ldots, a_n, b_1, \ldots, b_m \in A$ such that

$$(\cdots (a \ast a_1) \ast \cdots) \ast a_n = 0,$$

$$(\cdots (b \ast b_1) \ast \cdots) \ast b_m = 0,$$

$$f(a_1) \land \cdots \land f(a_n) > \mu(a) - \frac{1}{k},$$

$$f(b_1) \land \cdots \land f(b_m) > \mu(b) - \frac{1}{k}.$$

From Lemma 2.10 it follows that $(\cdots ((\cdots (x \ast a_1) \ast \cdots) \ast a_n) \ast b_1) \ast \cdots) \ast b_m = 0$. Then

$$\mu(x) \geq f(a_1) \land \cdots \land f(a_n) \land f(b_1) \land \cdots \land f(b_m) > \left(\mu(a) - \frac{1}{k}\right) \land \left(\mu(b) - \frac{1}{k}\right).$$

Hence $\mu(x) \geq \mu(a) \land \mu(b)$ and by Proposition 3.8, $\mu \in F\mathcal{I}(A)$.

Applying (pBCK-3) we get $x \ast x = 0$. From this we see that $f(x) \leq \mu(x)$. Thus $f \leq \mu$. Finally, suppose ν is a fuzzy ideal of A such that $f \leq \nu$. Then for any $x \in A$ we obtain

$$\mu(x) = \bigvee \{f(a_1) \land \cdots \land f(a_n) : (\cdots (x \ast a_1) \ast \cdots) \ast a_n = 0$$

and $a_1, \ldots, a_n \in A\}$$

$$\leq \bigvee \{\nu(a_1) \land \cdots \land \nu(a_n) : (\cdots (x \ast a_1) \ast \cdots) \ast a_n = 0 \text{ and } a_1, \ldots, a_n \in A\}.$$

and by Proposition 3.9,
\[\bigvee \{ \nu(a_1) \land \cdots \land \nu(a_n) : (\cdots (x*a_1) \cdots)^n a_n = 0 \text{ and } a_1, \ldots, a_n \in A \} \leq \nu(x). \]
Therefore \(\mu(x) \leq \nu(x) \) for all \(x \in A \). Consequently, \(\mu \leq \nu \). Thus \(\mu \) is the fuzzy ideal generated by \(f \), that is, \(\mu = [f] \).

Remark 3.20. Let \(f \) be a fuzzy set of a pseudo-BCK algebra \(A \). From Theorem 3.19 and (1) we have
\[
(f)(x) = \bigvee \{ f(a_1) \land \cdots \land f(a_n) : (\cdots (x \land a_1) \cdots)^n a_n = 0 \text{ and } a_1, \ldots, a_n \in A \}
\]
\[= \bigvee \{ f(a_1) \land \cdots \land f(a_n) : (\cdots (x \lor a_1) \cdots)^n a_n = 0 \text{ and } a_1, \ldots, a_n \in A \}
\]
for all \(x \in A \).

Example 3.21. Let \(A \) be the pseudo-BCK algebra from Example 2.2. Define a fuzzy set \(f \) of \(A \) by
\[
f(x) = \begin{cases}
0.7 & \text{if } x = 0, \\
0.3 & \text{if } x \in \{a, b\}, \\
0 & \text{if } x = 1.
\end{cases}
\]
Then the fuzzy ideal \(\mu = [f] \) generated by \(f \) is as follows:
\[
\mu(x) = \begin{cases}
0.7 & \text{if } x = 0, \\
0.3 & \text{if } x \in \{a, b, 1\}.
\end{cases}
\]

For \(\mu, \nu \in \mathcal{FI}(A) \) let \(\mu \lor \nu \) denote the join of \(\mu \) and \(\nu \), that is, \(\mu \lor \nu = [f] \), where \(f \) is the fuzzy set of \(A \) defined by \(f(x) = \mu(x) \lor \nu(x) \) for all \(x \in A \).

From Theorem 3.16 or from Theorems 2.9 and 3.10 we obtain

Theorem 3.22. Let \(A \) be a pseudo-BCK algebra. Then \((\mathcal{FI}(A) ; \land, \lor) \) is a complete lattice.

The following two theorems give the homomorphic properties of fuzzy ideals.

Theorem 3.23. Let \(A \) and \(B \) be pseudo-BCK algebras and let \(f : A \to B \) be a surjective homomorphism and \(\nu \in \mathcal{FI}(B) \). Then \(f^{-1}(\nu) \in \mathcal{FI}(A) \).

Proof. Let \(x \in A \). Since \(f(x) \in B \) and \(\nu \in \mathcal{FI}(B) \), we have \(\nu(0) \geq \nu(f(x)) = (f^{-1}(\nu))(x) \), but \(\nu(0) = \nu(f(0)) = (f^{-1}(\nu))(0) \). Thus we get \((f^{-1}(\nu))(0) \geq (f^{-1}(\nu))(x) \) for any \(x \in A \), that is, \(f^{-1}(\nu) \) satisfies (d1).

Now let \(x, y \in A \). Since \(\nu \in \mathcal{FI}(B) \), we have
\[
\nu(f(x)) \geq \nu(f(x) \ast f(y)) \land \nu(f(y)) = \nu(f(x \ast y)) \land \nu(f(y))
\]
and hence $f^{-1}(\nu)(x) \geq f^{-1}(\nu)(x * y) \land f^{-1}(\nu)(y)$. Consequently, $f^{-1}(\nu) \in \mathcal{FI}(A)$. ■

Lemma 3.24. Let A and B be pseudo-BCK algebras and let $f : A \to B$ be a homomorphism and $\mu \in \mathcal{FI}(A)$. Then, if μ is constant on $\ker f = f^{-1}(0)$, then $f^{-1}(\mu(f)) = \mu$.

Proof. Let $x \in A$ and $f(x) = y$. Hence

$$(f^{-1}(\mu(f))) (x) = (\mu(f))(f(x)) = (\mu(f))(y) = \bigvee \{ \mu(a) : a \in f^{-1}(y) \}.$$

For all $a \in f^{-1}(y)$, we have $f(a) = f(x)$. Then by (pBCK-3), $f(a) * f(x) = 0$. Hence $f(a*x) = 0$, that is, $a*x \in \ker f$. Thus $\mu(a*x) = \mu(0)$. Therefore, $\mu(a) \geq \mu(a*x) \land \mu(x) = \mu(0) \land \mu(x) = \mu(x)$. Similarly, $\mu(x) \geq \mu(a)$. Hence $\mu(x) = \mu(a)$. Thus

$$(f^{-1}(\mu(f))) (x) = \bigvee \{ \mu(a) : a \in f^{-1}(y) \} = \mu(x),$$

i.e., $f^{-1}(\mu(f)) = \mu$. ■

Theorem 3.25. Let A and B be pseudo-BCK algebras and let $f : A \to B$ be a surjective homomorphism and $\mu \in \mathcal{FI}(A)$ be such that $A_{\mu} \supseteq \ker f$. Then $\mu(f) \in \mathcal{FI}(B)$.

Proof. Since μ is a fuzzy ideal of A and $0 \in f^{-1}(0)$, we have

$$(\mu(f))(0) = \bigvee \{ \mu(a) : a \in f^{-1}(0) \} = \mu(0) \geq \mu(x)$$

for any $x \in A$. Hence

$$(\mu(f))(0) \geq \bigvee \{ \mu(x) : x \in f^{-1}(y) \} = (\mu(f))(y)$$

for any $y \in B$. Thus $\mu(f)$ satisfies (d1). Suppose that

$$f(\mu)(x_B) < f(\mu)(x_B * y_B) \land f(\mu)(y_B)$$

for some $x_B, y_B \in B$. Since f is surjective, there are $x_A, y_A \in A$ such that $f(x_A) = x_B$ and $f(y_A) = y_B$. Hence

$$f(\mu)(f(x_A)) < f(\mu)(f(x_A * y_A)) \land f(\mu)(f(y_A)).$$

Therefore

$$f^{-1}(\mu(f))(x_A) < f^{-1}(\mu(f))(x_A * y_A) \land f^{-1}(\mu(f))(y_A)).$$

Since $A_\mu \supseteq \ker f$, μ is constant on $\ker f$. Hence, by Lemma 3.24, we get

$$\mu(x_A) < \mu(x_A * y_A) \land \mu(y_A),$$

which is a contradiction with the fact that μ is a fuzzy ideal. Thus $\mu(f) \in \mathcal{FI}(B)$. ■
4. Fuzzy characterizations of Noetherian and Artinian pseudo-BCK algebras

In this section we characterize Noetherian pseudo-BCK algebras and Artinian pseudo-BCK algebras using some fuzzy concepts, in particular, fuzzy ideals. In the beginning we give some definitions.

A pseudo-BCK algebra A is called Noetherian if for every ascending sequence $I_1 \subseteq I_2 \subseteq \cdots$ of ideals of A there exists $k \in \mathbb{N}$ such that $I_n = I_k$ for all $n \geq k$. A pseudo-BCK algebra A is called Artinian if for every descending sequence $I_1 \supseteq I_2 \supseteq \cdots$ of ideals of A there exists $k \in \mathbb{N}$ such that $I_n = I_k$ for all $n \geq k$.

Obviously, every finite pseudo-BCK algebra is Noetherian and Artinian.

Example 4.1. Let B be the pseudo-BCK algebra from Example 2.3. Observe that $\text{Id}(B) = \{\{0\}, B\}$. Let $I \neq \{0\}$ be an ideal of B. Then there is an element $x \in I - \{0\}$. Since $(2x) \circ x = 2x < x \in I$, we conclude that $(2x) \circ x \in I$ and hence $2x \in I$. From this it follows that $2^n x \in I$ for each $n \in \mathbb{N}$. Let $y \in B$. Clearly, $\frac{y}{x} < 2^m$ for some $m \in \mathbb{N}$. Therefore $y < 2^m x \in I$. Then $y \in I$ and consequently, $I = B$. Thus $\text{Id}(B) = \{\{0\}, B\}$ and hence B is both Noetherian and Artinian.

Example 4.2. Let $(P; \leq)$ be a poset with a least element 0. For $x, y \in P$, we put

$$x \ast y = x \circ y = \begin{cases} 0 & \text{if } x \leq y, \\ x & \text{otherwise.} \end{cases}$$

Then $(P; \leq, \ast, \circ, 0)$ is a pseudo-BCK algebra. It is easy to see that for every $x \in P$ the subset $[0, x] = \{y \in P : y \leq x\}$ is an ideal of P.

For $P = \mathbb{Q}$ (the rational numbers) we have

(4) \[[0, 1] \subset [0, 2] \subset \cdots \subset [0, n] \subset \cdots \]

and

(5) \[[0, 1] \supset \left[0, \frac{1}{2}\right] \supset \cdots \supset \left[0, \frac{1}{n}\right] \supset \cdots . \]

Hence the pseudo-BCK algebra $(\mathbb{Q}; \leq, \ast, \circ, 0)$ is not Noetherian and also not Artinian.

Now we consider $P = \mathbb{N}_0$, where $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$. From (4) it follows that $\mathcal{N} = (\mathbb{N}_0; \leq, \ast, \circ, 0)$ is not Noetherian. Since every proper ideal of \mathcal{N} is a set of the form $\{0, 1, \ldots, n\}$ for some $n \in \mathbb{N}$, we conclude that \mathcal{N} is an Artinian pseudo-BCK algebra.

Theorem 4.3. Let \mathcal{A} be a pseudo-BCK algebra. The following statements are equivalent:
(a) \(\mathcal{A} \) is Noetherian,
(b) for each fuzzy ideal \(\mu \) of \(\mathcal{A} \), \(\text{Im}(\mu) = \{ \mu(x) : x \in A \} \) is a well-ordered set.

Proof. (a)⇒(b): Assume that \(\mathcal{A} \) is Noetherian and \(\mu \) is a fuzzy ideal of \(\mathcal{A} \) such that \(\text{Im}(\mu) \) is not a well-ordered subset of \([0,1]\). Then there exists a strictly decreasing sequence \((\mu(x_n)) \), where \(x_n \in \mathcal{A} \). Let \(t_n = \mu(x_n) \) and \(U_n = U(\mu; t_n) = \{ x \in \mathcal{A} : \mu(x) \geq t_n \} \). Then, by Theorem 3.10, \(U_n \) is an ideal of \(\mathcal{A} \) for every \(n \in \mathbb{N} \). So \(U_1 \subset U_2 \subset \ldots \) is a strictly ascending sequence of ideals of \(\mathcal{A} \). This contradicts the assumption that \(\mathcal{A} \) is Noetherian. Therefore \(\text{Im}(\mu) \) is a well-ordered set for each fuzzy ideal \(\mu \) of \(\mathcal{A} \).

(b)⇒(a): Assume that (b) is true. Suppose that \(\mathcal{A} \) is not Noetherian. Then there exists a strictly ascending sequence \(I_1 \subset I_2 \subset \ldots \subset I_n \subset \ldots \) of fuzzy ideals of \(\mathcal{A} \). Let \(\mu \) be a fuzzy set of \(\mathcal{A} \) by
\[
\mu(x) = \begin{cases}
0 & \text{if } x \notin I_n \text{ for each } n \in \mathbb{N}, \\
\frac{1}{n} & \text{if } x \in I_n - I_{n-1} \text{ for } n = 1, 2, \ldots,
\end{cases}
\]
where \(I_0 = \emptyset \). By Lemma 3.15, \(\mu \in \mathcal{FI}(\mathcal{A}) \), but \(\text{Im}(\mu) \) is not a well-ordered set, which is a contradiction. Therefore \(\mathcal{A} \) is Noetherian and the proof is complete.

Corollary 4.4. Let \(\mathcal{A} \) be a pseudo-BCK algebra. If for every fuzzy ideal \(\mu \) of \(\mathcal{A} \), \(\text{Im}(\mu) \) is a finite set, then \(\mathcal{A} \) is Noetherian.

Theorem 4.5. Let \(\mathcal{A} \) be a pseudo-BCK algebra and let \(T = \{t_1, t_2, \ldots\} \cup \{0\} \), where \((t_n) \) is a strictly decreasing sequence in \((0,1)\). Then the following conditions are equivalent:
(a) \(\mathcal{A} \) is Noetherian,
(b) for each fuzzy ideal \(\mu \) of \(\mathcal{A} \), if \(\text{Im}(\mu) \subseteq T \), then there exists \(k \in \mathbb{N} \) such that \(\text{Im}(\mu) \subseteq \{t_1, t_2, \ldots, t_k\} \cup \{0\} \).

Proof. (a)⇒(b): Assume that \(\mathcal{A} \) is Noetherian. Let \(\mu \) be a fuzzy ideal of \(\mathcal{A} \) such that \(\text{Im}(\mu) \subseteq T \). From Theorem 4.3 we know that \(\text{Im}(\mu) \) is a well-ordered subset of \([0,1]\). Thus there exists \(k \in \mathbb{N} \) such that \(\text{Im}(\mu) \subseteq \{t_1, t_2, \ldots, t_k\} \cup \{0\} \).

(b)⇒(a): Assume that (b) is true. Suppose that \(\mathcal{A} \) is not Noetherian. Then there exists a strictly ascending sequence \(I_1 \subset I_2 \subset \ldots \) of ideals of \(\mathcal{A} \). Define a fuzzy set \(\mu \) of \(A \) by
\[
\mu(x) = \begin{cases}
0 & \text{if } x \notin I_n \text{ for each } n \in \mathbb{N}, \\
t_n & \text{if } x \in I_n - I_{n-1} \text{ for } n = 1, 2, \ldots,
\end{cases}
\]
where \(I_0 = \emptyset \). By Lemma 3.15, \(\mu \) is a fuzzy ideal of \(\mathcal{A} \). This contradicts our assumption. Thus \(\mathcal{A} \) is Noetherian.
Theorem 4.6. Let A be a pseudo-BCK algebra and let $T = \{t_1, t_2, \ldots\} \cup \{0, 1\}$, where (t_n) is a strictly increasing sequence in $(0, 1)$. Then the following conditions are equivalent:

(a) A is Artinian,
(b) for each fuzzy ideal μ of A, if $\text{Im}(\mu) \subseteq T$, then there exists $k \in \mathbb{N}$ such that $\text{Im}(\mu) \subseteq \{t_1, t_2, \ldots, t_k\} \cup \{0, 1\}$.

Proof. (a) \Rightarrow (b). On the contrary assume that $t_{i_1} < t_{i_2} < \cdots < t_{i_m} < \cdots$ is a strictly increasing sequence of elements of $\text{Im}(\mu)$. Let $U_m = U(\mu; t_{i_m})$ for $m = 1, 2, \ldots$. It is easy to see that $U_1 \supseteq U_2 \supseteq \cdots \supseteq U_m \supseteq \cdots$ is a strictly descending sequence of ideals of A. This contradicts the assumption that A is Artinian.

(b) \Rightarrow (a) Assume that (b) is true. Suppose that A is not Artinian. Then there exists a strictly descending sequence $I_1 \supseteq I_2 \supseteq \cdots \supseteq I_n \supseteq \cdots$ of ideals of A. Define a fuzzy set μ of A by

$$\mu(x) = \begin{cases}
0 & \text{if } x \notin I_1, \\
t_n & \text{if } x \in I_n - I_{n+1} \text{ for } n = 1, 2, \ldots, \\
1 & \text{if } x \in \bigcap\{I_n : n \in \mathbb{N}\}.
\end{cases}$$

Obviously, $\mu(0) = 1 \geq \mu(x)$ for all $x \in A$, that is, (d1) holds. Now we show that μ satisfies (d2). Let $x, y \in A$. We have three cases.

Case 1: $x \notin I_1$. Then $x \ast y \notin I_1$ or $y \notin I_1$. Therefore $\mu(x \ast y) \land \mu(y) = 0 = \mu(x)$.

Case 2: $x \in I_n - I_{n+1}$ for some $n = 1, 2, \ldots$. Then $x \ast y \notin I_{n+1}$ or $y \notin I_{n+1}$. Hence $\mu(x \ast y) \leq t_n$ or $\mu(y) \leq t_n$. Therefore $\mu(x \ast y) \land \mu(y) \leq t_n = \mu(x)$.

Case 3: $x \in \bigcap\{I_n : n \in \mathbb{N}\}$. Obvious.

Thus μ is a fuzzy ideal of A. This contradicts our assumption. Thus A is Artinian. ■

Corollary 4.7. Let A be a pseudo-BCK algebra. If for every fuzzy ideal μ of A, $\text{Im}(\mu)$ is a finite set, then A is Artinian.

Acknowledgements. The authors thank the referee for his/her remarks which were incorporated into this revised version.

References

